Search for the Critical Point via Intermittency Analysis in NA61/SHINE

Authors

  • V.Z. Reyna Ortiz Jan Kochanowski University of Kielce
  • for the NA61/SHINE Collaboration

DOI:

https://doi.org/10.15407/ujpe69.11.858

Keywords:

critical point, intermittency

Abstract

The existence and location of the QCD critical point are objects of both experimental and theoretical studies. The comprehensive data collected by NA61/SHINE during a two-dimensional scan in beam momentum and system size allows for a systematic search for the critical point – a search for a non-monotonic dependence of various correlation and fluctuation observables on collision energy and size of colliding nuclei. Intermittency analysis is a statistical tool used in heavy ion collisions that includes the study of scaled factorial moments (SFMs) of multiplicity distributions in the 2D transverse momentum space to detect power-law fluctuations and explore different aspects of the QCD phase diagram. In particular, proton intermittency has been used to locate the critical point of strongly interacting matter, and, more recently, intermittency of negatively charged hadrons have also been used to study the properties of QCD interactions.

References

N. Abgrall et al., NA61 Coll. NA61/SHINE facility at the CERN SPS: Beams and detector system. JINST 9, P06005 (2014).

M. Gazdzicki, for the [NA49-future Collaboration]. A new SPS program. arXiv:nucl-ex/0612007 (2006).

K. Grebieszkow, [NA49 Collaboration]. Search for the critical point of strongly interacting matter in NA49. Nucl. Phys. A 830, 547 (2009).

https://doi.org/10.1016/j.nuclphysa.2009.09.044

T. Anticic, B. Baatar, J. Bartke, H. Beck, L. Betev, H. Bia lkowska, C. Blume, B. Boimska, J. Book, M. Botje,

et al., [NA49 Collaboration]. Measurement of event-byevent transverse momentum and multiplicity fluctuations using strongly intensive measures Δ[pT, N] and Σ[pT, N] in nucleus-nucleus collisions at the CERN Super Proton Synchrotron. Phys. Rev. C 92, 044905 (2015).

M. Asakawa, K. Yazaki. Chiral restoration at finite density and temperature. Nucl. Phys. A 504, 668 (1989).

https://doi.org/10.1016/0375-9474(89)90002-X

A. Barducci, R. Casalbuoni, S. De Curtis, R. Gatto, G. Pettini. Chiral symmetry breaking in QCD at finite temperature and density. Phys. Lett. B 231, 463 (1989).

https://doi.org/10.1016/0370-2693(89)90695-3

M. Gazdzicki, P. Seyboth. Search for critical behavior of strongly interacting matter at the CERN Super Proton Synchrotron. Acta Phys. Pol. B 47, 1201 (2016).

https://doi.org/10.5506/APhysPolB.47.1201

Peter Seyboth. Search for the ollisions. J. Phys.: Conf. Ser. 668, 012027 (2016).

https://doi.org/10.1088/1742-6596/668/1/012027

C. Alt, T. Anticic, B. Baatar, D. Barna, J. Bartke, L. Betev, H. Bialkowska, C. Blume, B. Boimska, M. Botje, et al. Centrality and system size dependence of multiplicity fluctuations in nuclear collisions at 158A GeV. Phys. Rev. C 75, 064904 (2007).

C. Alt, T. Anticic, B. Baatar, D. Barna, J. Bartke, L. Betev, H. Bialkowska, C. Blume, B. Boimska, M. Botje, et al. Energy dependence of multiplicity fluctuations in heavy ion collisions at 20A to 158A GeV. Phys. Rev. C 78, 034914 (2008).

L. Adamczyk, J.K. Adkins, G. Agakishiev, M.M. Aggarwal, Z. Ahammed, I. Alekseev, J. Alford, C.D. Anson, A. Aparin, D. Arkhipkin et al. [STAR Collaboration]. Energy dependence of moments of net-proton multiplicity distributions at RHIC. Phys. Rev. Lett. 112, 032302 (2014).

N.G. Antoniou, Y.F. Contoyiannis, F.K. Diakonos, A.I. Karanikas, C.N. Ktorides. Pion production from a critical QCD phase. Nucl. Phys. A 693, 799 (2001).

https://doi.org/10.1016/S0375-9474(01)00921-6

Y. Hatta, M.A. Stephanov. Proton-number fluctuation as a signal of the qcd critical end point. Phys. Rev. Lett. 91, 102003 (2003).

https://doi.org/10.1103/PhysRevLett.91.102003

STAR Collaboration. Energy dependence of intermittency for charged hadrons in Au + Au collisions at RHIC. Phys. Lett. B 845, 138165 (2023).

T. Anticic et al. (NA49 Collaboration). Search for the QCD critical point in nuclear collisions at the CERN SPS. Phys. Rev. C 81, 064907 (2010).

A. Bialas, R. Peschanski. Intermittency in multiparticle production at high energy. Nucl. Phys. B 308, Issue 4 (1988).

https://doi.org/10.1016/0550-3213(88)90131-9

N.G. Antoniou, F.K. Diakonos, A.S. Kapoyannis, K.S. Kousouris. Critical opalescence in baryonic QCD matter. Phys. Rev. Lett. 97, 032002 (2006).

https://doi.org/10.1103/PhysRevLett.97.032002

N.G. Antoniou, N. Davis, F.K. Diakonos. Fractality in momentum space: A signal of criticality in nuclear collisions. Phys. Rev. C 93, 014908 (2016).

https://doi.org/10.1103/PhysRevC.93.014908

E.A. De Wolf, I.M. Dremin, W. Kittel. Scaling laws for density correlations and fluctuations in multiparticle dynamics. Phys. Rep. 270, 1 (1996).

https://doi.org/10.1016/0370-1573(95)00069-0

T. Vicsek. Fractal Growth Phenomena (World Scientific, 1989) [ISBN: 9971-50-830-3].

https://doi.org/10.1142/0511

T. Anticic, B. Baatar, J. Bartke, H. Beck, L. Betev, H. Bia lkowska, C. Blume, M. Bogusz, B. Boimska, J. Book, et al. Critical fluctuations of the proton density in A + A collisions at 158A GeV/c. Eur. Phys. J. C 75, 587 (2015).

https://doi.org/10.1140/epjc/s10052-015-3738-5

K. Werner, T. Pierog, F.M. Liu. Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron-gold collisions at the BNL relativistic heavy ion collider. Phys. Rev. C 74, 044902 (2006).

https://doi.org/10.1103/PhysRevC.74.044902

A. Bialas, M. Gazdzicki. A new variable to study intermittency. Phys. Lett. B 252 (3), 493 (1990).

https://doi.org/10.1016/0370-2693(90)90575-Q

NA61/SHINE Collaboration, H. Adhikary, P. Adrich, K.K. Allison et al. Search for a critical point of stronglyinteracting matter in central Ar + Sc collisions at 13A − 75A GeV/c beam momentum. Eur. Phys. J. C 84 (7), 741 (2024).

NA61/SHINE Collaboration, H. Adhikary et al. Search for the critical point of strongly-interacting matter in 40Ar + 45Sc collisions at 150A GeV/c using scaled factorial moments of protons. Eur. Phys. J. C 83 (9), 881 (2023).

NA61/SHINE Collaboration, V.Z. Reyna Ortiz. Talk presented at CPOD 2024 - 15th Workshop on Critical Point and Onset of Deconfinement, 20-24 May 2024 (Berkeley, California, 2024).

A. Rybicki (for the NA61/SHINE Collaboration). Recent results from NA61/SHINE. arXiv:2409.19763

A. Bzdak. Available theoretical tools in search for the critical point of the QCD phase diagram Contribution to: SQM2024. In: The 21st International Conference on Strangeness in Quark Matter (SQM 2024), 3-7 June 2024, Strasbourg, France.

Downloads

Published

2024-12-03

How to Cite

Reyna Ortiz, V., & for the NA61/SHINE Collaboration. (2024). Search for the Critical Point via Intermittency Analysis in NA61/SHINE. Ukrainian Journal of Physics, 69(11), 858. https://doi.org/10.15407/ujpe69.11.858

Issue

Section

Theory