Емісія біофотонів у біотехнологічних дослідженнях: від гносеології та значення до експерименту. Частина 1

Автор(и)

  • G. Nevoit Lithuanian University of Health Sciences, Poltava State Medical University
  • I.A. Bumblyte Lithuanian University of Health Sciences
  • A. Korpan Poltava State Medical University
  • O. Minser Shupyk National Healthcare University of Ukraine
  • M. Potyazhenko Poltava State Medical University
  • M.T. Iliev Faculty of Physics, Sofia University “St. Kliment Ohridski”
  • A. Vainoras Lithuanian University of Health Sciences
  • I. Ignatov Sceintific Research Center of Medical Biophysics

DOI:

https://doi.org/10.15407/ujpe69.3.190

Ключові слова:

бiофотон, бiофотонне випромiнювання, надслабке випромiнювання фотонiв, бiотехнологiчнi дослiдження

Анотація

В оглядi представлено обґрунтування доцiльностi оцiнки бiофотонної емiсiї в хiмiко-бiотехнологiчних дослiдженнях та iснуючi для цього методи. У частинi 1 також здiйснено гносеологiчний аналiз методiв оцiнки випромiнювання бiофотонiв. Видiлено наступнi етапи в iсторiї розвитку методiв: першi вiдкриття та постановка проблеми – допарадигмальна фаза – дотехнiчний етап (80-тi рр. XVIII ст. – 30-тi рр. ХХ ст.); допарадигмальна фаза – технiчний етап (30–60-тi рр. ХХ ст.); парадигмальний науковий етап – етап накопичення наукових даних (60-тi–00-вi рр. ХХ ст.); парадигмальний науковий етап – етап цифрових технологiй I системного наукового аналiзу (XXI ст.). У частинi 2 будуть описанi технологiчнi особливостi методологiї та параметрiв оцiнки бiофотонiв, що дозволить використовувати бiофотонне випромiнювання в експериментах у бiотехнологiчних дослiдженнях.

Посилання

V.N. Binhi, A.B. Rubin. Theoretical concepts in magnetobiology after 40 years of research. Cells. 11, 274 (2022).

https://doi.org/10.3390/cells11020274

S. Gibney, J.M. Hicks, A. Robinson, A. Jain, P. Sanjuan-Alberte, F.J. Rawson. Toward nanobioelectronic medicine: Unlocking new applications using nanotechnology. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 13, e1693 (2021).

https://doi.org/10.1002/wnan.1693

O.P. Minser, M.M. Potiazhenko, G.V. Nevoit. Evaluation of the human bioelectromagnetic field in medicine: The development of methodology and prospects are at the present scientific stage. Wiadomo'sci Lekarskie. 5, II (2019).

https://doi.org/10.36740/WLek201905231

J.D. Wells. Discovery beyond the standard model of elementary particle physics. In: Springerbriefs in Physics Ser. (Springer Nature Switzerland AG, 2020).

https://doi.org/10.1007/978-3-030-38204-9

P. Paganini. Fundamentals of Particle Physics: Understanding the Standard Model (Cambridge University Press, 2023.

https://doi.org/10.1017/9781009171595

T. H¨ubsch. Advanced Concepts in Particle and Field Theory (Cambridge University Press, 2023).

K. Yamanouchi. Quantum Mechanics of Molecular Structures (Springer-Verlag, 2016).

M.M.Jr. Kenneth. Using quantum mechanical approaches to study biological systems. Acc. Chem. Res. 47, 9 (2014).

https://doi.org/10.1021/ar5001023

J. Mehra. Quantum mechanics and the explanation of life: The inclusion of human consciousness in quantum physics recognizes mind as the primary reality: Will a new science arise that can harmonize quantum physics and biology? American Scientist. 61, 6 (2021).

K.A. Peacock. The Quantum Revolution (Greenwood Publishing Group, 2008).

L. Demetrius. Quantum statistics and allometric scaling of organisms. Physica A 322, 477 (2003).

https://doi.org/10.1016/S0378-4371(03)00013-X

H.A. Pohl, J.K. Pollock. Modern Bioeletrochemistry. Ch. Biological Dielectrophoresis: The Behavior of Biologically Significant Materials in Nonuniform Electric Fields (Plenum press, 1986).

https://doi.org/10.1007/978-1-4613-2105-7_12

Encyclopedia of Physical Science and Technology Reference Work (Academic Press, 2001).

V.P. Gupta. Principles and Applications of Quantum Chemistry (Academic Press, 2016).

https://doi.org/10.1016/B978-0-12-803478-1.00001-7

O.P. Minser, M.M. Potyazhenko, G.V. Nevoit. Magnetoelectrochemical Theory of Metabolism. Volume 1. Conceptualization, Monograph (Interservice, 2021).

G. Nevoit, I.A. Bumblyte, M. Potyazhenko, O. Minser. Modern biophysical view of electromagnetic processes of the phenomenon of life of living biological systems as a promising basis for the development of complex medicine: The role of cell membranes. J. Complexity in Health Sciences 5, 22 (2022).

https://doi.org/10.21595/chs.2022.22787

G. Nevoit, I.A. Bumblyte, M. Potyazhenko, O. Minser. Modern biophysical view of electromagnetic processes of the phenomenon of life of living biological systems as a promising basis for the development of complex medicine: The role of water. J. Complexity in Health Sciences. 2, 45 (2022).

https://doi.org/10.21595/chs.2022.23089

O.P. Mintser, V.V. Semenets, M.M. Potiazhenko, P.M. Podpruzhnykov, G.V. Nevoit. The study of the electromagnetic component of the human body as a diagnostic indicator in the examination of patients with noncommunicablediseases: Problem statement. Wiadomo'sci Lekarskie. 6, 73 (2020).

https://doi.org/10.36740/WLek202006139

O.P. Minser, M.M. Potiazhenko, A. Vainoras, I.A. Bumblyte, G.V. Nevoit. Informational analytical representations of the magnetoelectrochemical theory of metabolism, life and health, Ukrainian. J. Medicine, Biology and Sports. 7, 232 (2020).

E. Schr¨odinger. What is the Life? The Physical Aspect of the Living Cell (University Press, 1944).

H. Frohlich. Long-ranch coherence and energy storage in biological systems. Int. J. Quantum. Chem. 2, 641 (1968).

https://doi.org/10.1002/qua.560020505

O.P. Mintser, M.M. Potiazhenko, G.V. Nevoit. Informational analytical representations of the magneto-electrochemical theory of life and health. J. Appl. Interdiscipl. Res. 2, 72 (2023).

G.V. Nevoit, O. Filiunova, M.M. Potyazhenko, O.P. Minser, I.A. Bumblyte, A. Vainoras. Modern biophysical view of electromagnetic processes of the phenomenon of life of living biological systems as a promising basis for the development of complex medicine: Towards the concept of bioelectronic medicine. J. of Complexity in Health Sci. 6 (2), (2023).

https://doi.org/10.21595/chs.2023.23867

O. Filiunova, G.V. Nevoit, M.M. Potyazenko, A. Vainoras. Bioelectronic medicine for sports: Justification of biophysical mechanisms and clinical feasibility of use. Fitoterapiia. Chasopys-Phytotherapy. J. 3, 73 (2023).

https://doi.org/10.32782/2522-9680-2023-3-73

P.J. Shepherd. A Course in Theoretical Physics (John Wiley & Sons Ltd, 2013).

https://doi.org/10.1002/9781118516911

F. Scholkmann, D. Fels, M. Cifra. Non-chemical and noncontact cell-to-cell communication: A short review. Am. J. Trans. Res. 5 (6), 586 (2013).

A.S. Davydov. Solitons as energy carries in biological systems. Studia Biophys. 62 (1), 1 (1977).

R. Van Wijk. Bio-photons and Bio-communication. J. of Scientific Exploration 15 (2), 183 (2001).

F.-A. Popp, K.H. Li, Q. Gu. Recent Advances in Biophoton Research and its Applications (World Scientific Publishing, 1992).

R.P. Bajpai. Quantum coherence of biophotons and living systems. Indian J. Experimental Biology 41 (5), 514 (2003).

F. Popp. Biophotonen e Ein neuer Weg zur L¨osung des Krebsproblems. In: Biophotonen: e. neuer Weg zur L¨osung d. Krebsproblems. von F.A. Popp (Eds.), Krebsgeschehen, Schriftenreihe, Bd. 6 (Fritz-Albert Verlag f'ur Medizin Dr. Ewald Fischer, 1976).

A. Prasad, P. Gouripeddi, H.R.N. Devireddy, A. Ovsii, D.P. Rachakonda, R.V. Wijk, P. Posp'ıˇsil. Spectral distribution of ultra-weak photon emission as a response to wounding in plants: An in vivo study. Biology. 9 (6), 139 (2020).

https://doi.org/10.3390/biology9060139

F.A. Popp, J.J. Chang, A. Herzog, Z. Yan, Y. Yan. Evidence of non-classical (squeezed) light in biological systems. Phys. Lett. A 293, 98 (2002).

https://doi.org/10.1016/S0375-9601(01)00832-5

H.J. Niggli. Biophotons: Ultraweak light impulses regulate life processes in aging. J. Gerontol. Geriat. Res. 3, 143 (2014).

https://doi.org/10.4172/2167-7182.1000143

R.P. Bajpai. Biophoton emission in a squeezed state from a sample of parmelia tinctorum. Phys. Lett. A 322, 131 (2004).

https://doi.org/10.1016/j.physleta.2003.12.050

J.J. Chang, J. Fisch, F.A. Popp. Biophotons (Kluwer Academic Publishers, 1998).

https://doi.org/10.1007/978-94-017-0928-6

F.A. Popp, L.V. Beloussov. Integrative Biophysics: Biophotons (Kluwer Academic Publishers, 2003).

https://doi.org/10.1007/978-94-017-0373-4

M. Calcerrada, C. Garc'ıa-Ruiz. Human ultraweak photon emission: Key analytical aspects, results and future trends - a review. Crit. Rev. Anal. Chem. 49, 368 (2019).

https://doi.org/10.1080/10408347.2018.1534199

P. Madl. Biophotonics or the light of life. Lecture Series: Block I/IV - Biophysics in Life Sciences. University of Salzburg Dep. of Physics & Biophysics. url: biophysics.scb.ac.at/talk/BP_1o4.pdf.

M. Benfatto, E. Pace, I. Davoli, R. Francini, F. De Matteis, A. Scordo, A. Clozza, L. De Paolis, C. Curceanu, P. Grigolini. Biophotons: New experimental data and analysis. Entropy 25, 1431 (2023).

https://doi.org/10.3390/e25101431

L. De Paolis, R. Francini, I. Davoli, F. De Matteis, A. Scordo, A. Clozza, M. Grandi, E. Pace, C. Curceanu, P. Grigolini, M. Benfatto. Biophotons: A hard problem. arXiv:2401.17166 [physics.bio-ph].

M. Benfatto, E. Pace, C. Curceanu, A. Scordo, A. Clozza, I. Davoli, M. Lucci, R. Francini, F. De Matteis, M. Grandi, R. Tuladhar, P. Grigolini. Biophotons and emergence of quantum coherence - A diffusion entropy analysis. Entropy 23, 554 (2021).

https://doi.org/10.3390/e23050554

G. Nevoit, I.A. Bumblyte, M. Potyazhenko, O. Minser, A. Vainoras. Modern biophysical view of electromagnetic processes of the phenomenon of life of living biological systems as a promising basis for the development of complex medicine: The role of biophotons. J. of Complexity in Health Sci. 6, 1 (2023).

https://doi.org/10.21595/chs.2023.23443

M. Kobayashi, H. Inaba. Photon statistics and correlation analysis of ultraweak light originating from living organisms for extraction of biological information. Appl. Opt. 39, 183 (2000).

https://doi.org/10.1364/AO.39.000183

M. Kobayashi, T. Iwasa, M. Tada. Polychromatic spectral pattern analysis of ultra-weak photon emissions from a human body. J. Photochem. Photobiol. B 159, 186 (2016).

https://doi.org/10.1016/j.jphotobiol.2016.03.037

M. Kobayashi. Two-dimensional imaging and spatiotemporal analysis of biophoton. In: Biophotonics: Optical Science and Engineering for the 21st Century (Springer, 2005), pp. 155-171.

https://doi.org/10.1007/0-387-24996-6_12

M. Cifra, E. Van Wijk, H. Koch, S. Bosman, R. Van Wijk. Spontaneous ultraweak photon emission from human hands is time dependent. Radioengineering 16 (2), 15 (2007).

https://doi.org/10.1117/12.727672

R. Van Wijk, M. Kobayashi, E.P.A. Van Wijk. Anatomic characterization of human ultra-weak photon emission with a moveable photomultiplier and CCD imaging. J. Photochem. Photobiology, B: Biology 83, 69 (2006).

https://doi.org/10.1016/j.jphotobiol.2005.12.005

T.M. Srinivasan. Biophotons as subtle energy carriers. Int. J. Yoga 10, 57 (2017).

https://doi.org/10.4103/ijoy.IJOY_18_17

F.A. Popp, W. Nagl, K.H. Li, W. Scholz, O. Weing¨artner et al. Biophoton emission. New evidence for coherence and DNA as source. Cell Biophys. 6, 33 (1984).

https://doi.org/10.1007/BF02788579

F.A. Popp. Coupling of Fr¨ohlich-modes as a basis for biological regulation. In: Herbert Fr¨ohlich, FRS, a Physicist Ahead of His Time: a Centennial Celebration of His Life and Work. Edited by G.J. Hyland, P. Rowlands (University of Liverpool, 2006).

W. Nagl, F.A. Popp. A physical (electromagnetic) model of differentiation, Basic considerations. Cytobios. 37, 145 (1983).

S. Usui, M. Tada, M. Kobayashi. Non-invasive visualization of physiological changes of insects during metamorphosis based on biophoton emission imaging. Sci. Rep. 12, 9 (2019).

https://doi.org/10.1038/s41598-019-45007-3

C. Moro, A. Liebert, C. Hamilton, N. Pasqual, G. Jeffery, J. Stone, J. Mitrofanis. The code of light: Do neurons generate light to communicate and repair? Neural Regen. Res. 17, 1251 (2022).

https://doi.org/10.4103/1673-5374.327332

R. Van Wijk, E.P.A. Van Wijk, J. Pang, M. Yang, Y. Yan, J. Han. Integrating ultra-weak photon emission analysis in mitochondrial research. Front. Physiol. 11, 717 (2020).

https://doi.org/10.3389/fphys.2020.00717

M. Bischof. Biophotons, the Light in Our Cells (Zweitausendeins, 1995).

M. Cifra, P. Posp'ıˇsil. Ultra-weak photon emission from biological samples: Definition, mechanisms, properties, detection and applications. J. Photochem. Photobiol. B. 139, 2 (2014).

https://doi.org/10.1016/j.jphotobiol.2014.02.009

J.A. Ives, E.P. Van Wijk, N. Bat, C. Crawford, A. Walter, W.B. Jonas, R. Van Wijk, J. Van der Greef. Ultraweak photon emission as a non-invasive health assessment: A systematic review. PLoS One 9, e87401 (2014).

https://doi.org/10.1371/journal.pone.0087401

H.J. Niggli, S. Tudisco, L. Lanzan'o, L.A. Applegate, A. Scordino et al. Laser-ultraviolet-A-induced ultraweak photon emission in human skin cells: A biophotonic comparision between keratinocytes and fibroblasts. Indian J. Exp. Biol. 46, 358 (2008).

M. Stefanov. Primo vascular system: Before the past, bizarre present and peek after the future. J. Acupunct. Meridian Stud. 15, 61 (2022).

https://doi.org/10.51507/j.jams.2022.15.1.61

P. Mandel. Energy Emission Analysis: New Application of Kirlian Photography for Holistic Health (Synthesis, 1987).

K.P. Schlebusch, W. Maric-Oehler, F.A. Popp, Biophotonics in the infrared spectral range reveal acupuncture meridian structure of the body. J. Altern. Complement. Med. 11, 171 (2005).

https://doi.org/10.1089/acm.2005.11.171

F.A. Popp, W. Klimek, W. Mari'c-Oehler, K.-P. Schlebusch. Visualization of meridian-like pathways after optical stimulation in the infrared spectral range - Preliminary results. Deutsche Zeitschrift fur Akupunktur. 49, 1 (2006).

https://doi.org/10.1078/0415-6412-00158

F. Zapata, V. Pastor-Ruiz, F. Ortega-Ojeda, G. Montalvo, A.V. Ruiz-Zolle, C. Garc'ıa-Ruiz. Human ultraweak photon emission as non-invasive spectroscopic tool for diagnosis of internal states - A review. J. Photoch. Photobiology B: Biology 216, 1 (2021).

https://doi.org/10.1016/j.jphotobiol.2021.112141

V. Salari, H. Valian, H. Bassereh et al. Ultraweak photon emission in the brain. J. Integr. Neurosci. 14, 419 (2015).

https://doi.org/10.1142/S0219635215300012

M. Takeda, M. Kobayashi, M. Takayama, S. Suzuki, T. Ishida, K. Ohnuki, T. Moriya, N. Ohuchi. Biophoton detection as a novel technique for cancer imaging. Cancer Sci. 95, 656 (2004).

https://doi.org/10.1111/j.1349-7006.2004.tb03325.x

K. Tsuchida, M. Kobayashi. Oxidative stress in human facial skin observed by ultraweak photon emission imaging and its correlation with biophysical properties of skin. Sci. Rep. 10, 9626 (2020).

https://doi.org/10.1038/s41598-020-66723-1

K.G. Korotkov, I.E. Korobka, T.G. Yakovleva et al. Electrophotonic Imaging technology in the diagnosis of autonomic nervous system in patients with arterial hypertension. J. Appl. Biotechnol. Bioeng. 5, 20 (2018).

https://doi.org/10.15406/jabb.2018.05.00112

G.V. Nevoit, O.P. Minser, M.M. Potiazhenko, L.Yu. Babintseva. Electro-photonic emission analysis in functionally health respondents and patients with non-communicable diseases. Wiadomo'sci Lekarskie 6, 74 (2021).

https://doi.org/10.36740/WLek202106128

G.V. Nevoit, M.M. Potiazhenko, O.P. Mintser, L.Yu. Babintseva. Electro-photonic emission analysis and hardware-software recording of heart rate variability during an objective structured clinical examination. World of Medicine and Biology. 74, 107 (2020).

https://doi.org/10.26724/2079-8334-2020-4-74-107-111

M. Yang, W. Ding, Y. Liu, H. Fan, R.P. Bajpai, J. Fu, J. Pang, X. Zhao, J. Han. Ultra-weak photon emission in healthy subjects and patients with type 2 diabetes: Evidence for a non-invasive diagnostic tool. Photochem. Photobiol. Sci. 16, 736 (2017).

https://doi.org/10.1039/c6pp00431h

G.V. Nevoit, A.S. Korpan, T.V. Nastroga, O.E. Kitura, N.L. Sokolyuk, N.A. Lyulka, M.M. Potiazhenko. Assessment of the stress and metabolism levels by using electrophotonic emission analysis method in Ukrainian military personnel after frontline service. Current problems of daily medicine News of the Ukr. Med. Dental Acad. 23, 1 (2023).

https://doi.org/10.31718/2077-1096.23.2.1.46

L.G. Camelo. Pathophysiology of biophoton: Vibratory impact syndrome leading to physical effects and metabolic changes - Part 1. Neuroscience & Medicine. 12, 126 (2021).

https://doi.org/10.4236/nm.2021.124011

K.G. Korotkov. The Energy of Health (Amazon.com publishing, 2019).

A.G. Gurwitsch. Untersuchungen uber den zeitlichen faktor der zellteilung. Arch. Entw. Mech. Org. 32, 447 (1911).

https://doi.org/10.1007/BF02287040

A.G. Gurwitsch. Die Natur des spezifischen Erregers der Zellteilung. Arch. Mikrosk. Anat. Und. Entw. Mech. 100 (1-2), 11 (1923).

https://doi.org/10.1007/BF02111053

A.G. Gurwitsch. Physicalisches uber mitogenetische Strahlen. Arch. Mikrosk. Anat. Und. Entw. Mech. 103 (3-4), 490 (1924).

https://doi.org/10.1007/BF02107498

E.V. Naumova, Yu.A. Vladimirov, V.V. Tuchin, V.A. Namiot, I.V. Volodyaev. Methods of studying ultraweak photon emission from biological objects: III, physical methods. Biophysics. 67, 1 (2022).

https://doi.org/10.1134/S0006350922010109

B. Rajewsky, F. Dessauer. Zur Frage des physikalischen Nachweises der Gurwitsch-Strahlung. In: Zehn Jahre Forschung Auf Dem Physikalisch-Medizinischen Grenzgebiet Georg (Thieme Verlag, 1931).

K. Korotkov. Science of measuring energy fields. A revolutionary technique to visualize energy felds of humans and nature. In: Bioelectromagnetic and Subtle Energy Medicine (CRC Press, 2015).

C.M. Gallep, S.R. dos Santos. Photon-counts during germination of wheat (Triticum aestivum) in wastewater sediment solutions correlated with seedling growth. Seed Sci. and Technology. 35, 3 (2007).

https://doi.org/10.15258/sst.2007.35.3.08

L. Colli, U. Facchini, G. Giudotti, R. Dungani Lonati, M. Orsenigo, O. Sommariva. Further measurements on the bioluminescence of the seedlings. Cellular and Mol. Life Sci. 11, 479 (1955).

https://doi.org/10.1007/BF02166829

F.A. Popp. Die Botschaft der Nahrung, 2001-Verlag - Frankfurt a.M. FRG, 2002, Popp F. Biophotonen e Ein neuer Weg zur L¨osung des Krebsproblems (Verlag f'ur Medizin Dr. Ewald Fischer, 1976).

M. Bischof. Introduction to integrative biophysics. In: Integrative Biophysics. Edited by F.A. Popp, L. Beloussov, (Springer, 2003), pp. 1-115.

https://doi.org/10.1007/978-94-017-0373-4_1

Biophotonics, Non-equilibrium and Coherent Systems in Biology, Biophysics and Biotechnology. Edited by F.A. Popp, L.V. Beloussov (Bioinform services, 1996).

J. Slawinski, Z. Gorski. Imaging of biophoton emission from electrostimulated skin acupuncture point jg4: Effect of light enhancers. Indian J. Exp. Biol. 46, 305 (2008).

M. Marinov, I. Ignatov. Color Kirlian Spectral Analysis, Color Oservation with Visual Analyzer (Euromedica, 2008).

I. Ignatov, O.V. Mosin. Kirlian effect in modeling of nonequilibrium conditions with the gas-electric discharge, simulating primary atmosphere. Nanotechnology. Res. Pract. 3, 3 (2014).

https://doi.org/10.13187/ejnr.2014.3.127

O.P. Mintser, L.A. Pisotska, N.V. Glukhova, V.H. Krasnobryzhev, T.D. Tepla. Analysis of the coherent properties of water accoding to the histogram of the brightness of its Kirlianphotograph. Medical Informatics and Engineering. 4, 39 (2023) (in Ukraine).

V.M. Inyushin, V.S. Gritsenko. The Biological Essence of Kirlian Effect (State University Alma Ata, 1968).

J.O. Pehek, H.J. Kyler, D.L. Faust. Image modulation in corona discharge photography. Science. 194, 4262 (1976).

https://doi.org/10.1126/science.968480

A. Antonov, L. Yuskesselieva. Research of water drops with high-frequency electric discharge (Kirlian) effect. Comptes Rendus Academie Bulg Sci. 21, 5 (1968).

A. Antonov. Research of the non-equilibrium processes in the area of allocated systems. Dissertation thesis for degree "Doctor of physical sciences" (Blagoevgrad, 1995).

I. Ignatov, Ch. Drossinakis, A.I. Ignatov. Color coronal spectral analysis. Results with water solution of Calcium Carbonate. Port. Electrochim. Acta. 43, 2 (2025).

L. Rebelo Gomes, P. Le˜ao. Recent approaches on signal transduction and transmission in acupuncture: A biophysical overview for medical sciences. J. Acupuncture and Meridian Studies 13, 1 (2020).

https://doi.org/10.1016/j.jams.2019.11.003

H.A. Pohl. Dielectrophoresis (Cambridge Univ. Press, 1978).

H.A. Pohl. Interactions between Electromagnetic Fields and Cells. Ch. AC Field effects of and by Living Cells (Plenum press, 1985).

N. Abd Rahman, F. Ibrahim, B. Yafouz. Dielectrophoresis for biomedical sciences applications: A review. Sensors. 17, 3 (2017).

https://doi.org/10.3390/s17030449

Biophotonics: Optical Science and Engineering for the 21st Century. Edited by R. Van Wijk, X. Shen (Springer, 2005).

V.P. Kaznacheev, L.P. Mikhailova. Ultraweak Radiation in Cell Interactions (Nauka, 1981).

V.P. Kaznacheev, L.P. Mikhailova, N.B. Kartashov. Distant intercellular electromagnetic interaction between two tissue cultures. Experimental Biology. 89, 3 (1980).

https://doi.org/10.1007/BF00834249

P. Volpe. Interactions of zero-frequency and oscillating magnetic fields withbiostructures and biosystems. Photochem. & Photobiolog. Sci. 2, 6 (2003).

https://doi.org/10.1039/b212636b

E. Del Giudice, V. Elia, A. Tedeschi. Role of water in the living organisms. Neural Network World 19, 4 (2009).

J. Pokorn'y. Multiple Fr¨ohlich coherent states in biological systems: Computer simulation. J. of Theoretical Biology 98, 1 (1982).

https://doi.org/10.1016/0022-5193(82)90055-8

P. Madl. The Field and the Photon From a Physical Point of View, Fields of the Cell, Congress Contribution (Basel (CH), 2012).

R. Van Wijk. Light in Shaping Life-Biophotons in Biology and Medicine (Meluna Research, 2014).

Biophotonics: Optical Science and Engineering for the 21st Century. Edited by X. Shen, R. Van Wijk (Springer, 2005).

P. Madl. The field and the photon from a physical point of view. Fields of the Cell, Congress contribution (Basel (CH), 2012).

Photomultiplier Tubes: Basics and Applications (Hamamatsu Photonics, 2017). https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/PMT_handbook_v4E.pdf

M. Kobayashi, D. Kikuchi, H. Okamura. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm. PLoS ONE 4, 7 (2009).

https://doi.org/10.1371/journal.pone.0006256

E. Van Wijk, M. Kobayashi, R. Van Wijk, J. van der Greef. Imaging of ultra-weak photon emission in a rheumatoid arthritis mouse model. PLoS ONE 8, 12 (2013).

https://doi.org/10.1371/journal.pone.0084579

E.V. Aleksandrova, T.N. Kovelkova, P.V. Strychkov et al. Electrophotonic analysis of arterial hypertension. J. Sci. Healing Outcome 7, 28 (2015).

D. Banupriya. A Randomised, Blinded. Placebo-controlled. Three armed parallel study on electrophotonic image changes during homoeopathic pathogenetic trial using molecular and ultra-molecular doses. PhD thesis (National Institute of Homoeopathy, 2018).

R.K. Bhat, G. Deo, R. Mavathur, T.M. Srinivasan. Correlation of electrophotonic imaging parameters with fasting blood sugar in normal, prediabetic, and diabetic study participants. J. Evidence-Based Complementary & Alternative Medicine 22, 3 (2017).

https://doi.org/10.1177/2156587216674314

G. Deo, S.K. Kumar, T.M. Srinivasan et al. Changes in electrophotonic imaging parameters associated with long term meditators and na¨ıve meditators in older adults practicing meditation. Europ. J. Integrative Medicine 7 (6), 663 (2015).

https://doi.org/10.1016/j.eujim.2015.08.004

K.G. Korotkov. Advances in Diagnosis and Monitoring of the human quantum informational field with GDV technique. In: ParaDigm 2001: Consciousness and Paranormal Phenomena, 2008.

K.G. Korotkov, P. Matravers, D.V. Orlov, B.O. Williams. Application of electrophoton capture (EPC) analysis based on gas discharge visualization (GDV) technique in medicine: A systematic review. J. Altern. Complement. Med. 16, 13 (2010).

https://doi.org/10.1089/acm.2008.0285

K.G. Korotkov. Electrophotonic analysis of complex parameters of the environment and psycho-emotional state of a person. Wise J. 4, 3 (2015).

K.G. Korotkov. Recent advances in electrophotonic image processing. Recent Patents and Topics on Imaging. 5, 311 (2015).

https://doi.org/10.2174/2451827105666160125232527

T.J. Barsotti, S. Jain, M. Guarneri, R.P. King, D. Vicario, P.J. Mills. An Exploratory Investigation of Human Biofield Responses to Encountering a Sacred Object (Explore, 2023).

https://doi.org/10.1016/j.explore.2023.01.007

K. Korotkov. Review of EPI papers on medicine and psychophysiology published in 2008-2018. Int. J. Complementary & Alternative Medicine 11, 5 (2018).

https://doi.org/10.15406/ijcam.2018.11.00417

A.I. Krashenyuk, K.G. Korotkov, N.A. Kuryleva. Study of the infuence of diagnostic ultrasound on the human aqua-system with bio-well device. J. Science of Healing Outcome. 9, 36 (2017).

E.G. Gedevanishvili, A.G. Kapanadze, L.E. Giorgobiani et al. Application of the GDV method in oncology. In: Proceedings of International Scientifc Congress on Bioelectrography (St Petersburg, 2015) pp. 36-45.

S.K. Kumar, T.M. Srinivasan, H.R. Nagendra, P. Marimuthu. Electrophotonic imaging based analysis of diabetes. Int. J. Complement Alt. Med. 4, 00134 (2016).

S.K. Kumar, T.M. Srinivasan, H.R. Nagendra. Neural Network Based Analysis of Electro Photonic Data for Disease Diagnosis and Intervention Recognition. PhD thesis (University Bengaluru, 2017).

D. Muehsam, G. Chevalier, T. Barsotti, B.T. Gurfein. An overview of biofield devices. Glob. Adv. Health Med. 4, 42 (2015).

https://doi.org/10.7453/gahmj.2015.022.suppl

P. Mandel. The Playful I Ching Or the Oracle on the Skin (Esogetics, 2013).

M. Croke, R.D. Bourne. A review of recent research studies on the efficacy of Esogetic Colorpuncture TherapyA wholistic acu light system. Am. J. Acupunct. 27, 85 (1999).

M. Croke, R. Dass, P. Mandel. A brief introduction to Esogetic Colorpuncture Therapy(TM) - A system of wholistic acu-light therapy: Theory and case studies. American J. Acupunct. 24, 167 (1996).

M.W. Ho. The Rainbow and the Worm: The Physics of Organisms (World Scientific, 2003).

T. Amano, M. Kobayashi, B. Devaraj, M. Usa, H. Inaba. Ultra-weak biophoton emission imaging of transplanted bladder cancer. Urol. Res. 23, 5 (1995).

https://doi.org/10.1007/BF00300020

J. Du, T. Deng, B. Cao, Z. Wang, M. Yang, J. Han, The application and trend of ultra-weak photon emission in biology and medicine. Front Chem. 11, 1140128 (2023).

https://doi.org/10.3389/fchem.2023.1140128

K.N. Irvine, J.C. Fisher, P.R. Bentley, M. Nawrath, M. Dallimer, G.E. Austen, R. Fish, Z.G. Davies. BioWell: The development and validation of a human wellbeing scale that measures responses to biodiversity. J. of Environmental Psychology. 85, 101921 (2023).

https://doi.org/10.1016/j.jenvp.2022.101921

Downloads

Опубліковано

2024-04-17

Як цитувати

Nevoit, G., Bumblyte, I., Korpan, A., Minser, O., Potyazhenko, M., Iliev, M., Vainoras, A., & Ignatov, I. (2024). Емісія біофотонів у біотехнологічних дослідженнях: від гносеології та значення до експерименту. Частина 1. Український фізичний журнал, 69(3), 190. https://doi.org/10.15407/ujpe69.3.190

Номер

Розділ

Фізика рідин та рідинних систем, біофізика і медична фізика