Термодинамічні величини плинів Морзе в надкритичній області
DOI:
https://doi.org/10.15407/ujpe68.6.383Ключові слова:
потенцiал взаємодiї Морзе, критична точка, термодинамiчний потенцiал, iзотермiчна стисливiсть, флуктуацiї густини, теплове розширенняАнотація
Iз врахуванням негаусових флуктуацiй параметра порядку та потенцiалу взаємодiї Морзе розраховано параметри критичної точки для рiдких лужних металiв (натрiю i калiю). Дослiджено поведiнку iзотермiчної стисливостi, флуктуацiй густини та теплового розширення для натрiю в надкритичнiй температурнiй областi. Суттєве зростання iзотермiчної стисливостi та флуктуацiй густини бiля критичної точки вказує на значну чутливiсть густини до незначних флуктуацiй тиску. Коефiцiєнт теплового розширення для рiзних фiксованих значень тиску проявляє типове для газiв зменшення iз зростанням надкритичної температури. Зображено лiнiю Вiдома, яка роздiляє газоподiбну та рiдиноподiбну структури плину при температурах вище критичної. Зазначимо, що нашi розрахунки справедливi у вузькому околi критичної точки, який є проблематичним для теоретичних та експериментальних дослiджень.
Посилання
C.-L. Lee, G. Stell, J.S. Høye. A simple SCOZA for simple fluids. J. Mol. Liq. 112, 13 (2004).
https://doi.org/10.1016/j.molliq.2003.11.004
C.E. Bertrand, J.F. Nicoll, M.A. Anisimov. Comparison of complete scaling and a field-theoretic treatment of asymmetric fluid criticality. Phys. Rev. E 85, 031131 (2012).
https://doi.org/10.1103/PhysRevE.85.031131
A. Parola, L. Reatto. Recent developments of the hierarchical reference theory of fluids and its relation to the renormalization group. Mol. Phys. 110, 2859 (2012).
https://doi.org/10.1080/00268976.2012.666573
A.V. Chalyi, L.A. Bulavin, V.F. Chekhun, K.A. Chalyy, L.M. Chernenko, A.M. Vasilev, E.V. Zaitseva, G.V. Khrapijchyk, A.V. Siverin, M.V. Kovalenko. Universality classes and critical phenomena in confined liquid systems. Condens. Matter Phys. 16, 23008 (2013).
https://doi.org/10.5488/CMP.16.23008
I.R. Yukhnovskii. The phase transition of the first order in the critical region of the gas-liquid system. Condens. Matter Phys. 17, 43001 (2014).
https://doi.org/10.5488/CMP.17.43001
T.J. Yoon, Y.-W. Lee. Current theoretical opinions and perspectives on the fundamental description of supercritical fluids. J. Supercrit. Fluids 134, 21 (2018).
https://doi.org/10.1016/j.supflu.2017.11.022
L.F. Vega. Perspectives on molecular modeling of supercritical fluids: From equations of state to molecular simulations. Recent advances, remaining challenges and opportunities. J. Supercrit. Fluids 134, 41 (2018).
https://doi.org/10.1016/j.supflu.2017.12.025
A. Oleinikova, L. Bulavin, V. Pipich. Critical anomaly of shear viscosity in a mixture with an ionic impurity. Chem. Phys. Lett. 278, 121 (1997).
https://doi.org/10.1016/S0009-2614(97)00945-7
S. Pittois, B. Van Roie, C. Glorieux, J. Thoen. Thermal conductivity, thermal effusivity, and specific heat capacity near the lower critical point of the binary liquid mixture n-butoxyethanol-water. J. Chem. Phys. 121, 1866 (2004).
https://doi.org/10.1063/1.1765652
R. Marr, T. Gamse. Use of supercritical fluids for different processes including new developments-a review. Chem. Eng. Process. 39, 19 (2000).
https://doi.org/10.1016/S0255-2701(99)00070-7
S. Artemenko, P. Krijgsman, V. Mazur. The Widom line for supercritical fluids. J. Mol. Liq. 238, 122 (2017).
https://doi.org/10.1016/j.molliq.2017.03.107
Y.X. Pang, M. Yew, Y. Yan et al. Application of supercritical fluid in the synthesis of graphene materials: A review. J. Nanopart. Res. 23, 204 (2021).
https://doi.org/10.1007/s11051-021-05254-w
A.R.H. Goodwin, J.V. Sengers, C.J. Peters. Applied Thermodynamics of Fluids (Royal Society of Chemistry, 2010) [ISBN: 978-1-84755-806-0].
https://doi.org/10.1039/9781849730983
M.A. Anisimov. Critical Phenomena in Liquids and Liquid Crystals (Gordon and Breach, 1991) [ISBN: 9782881248061].
D.Yu. Zalepugin, N.A. Tilkunova, I.V. Chernyshova, V.S. Polyakov. Development of technologies based on supercritical fluids. Supercritical Fluids: Theory and Practice 1, 27 (2006) [in Russian].
M. Kozlovskii, O. Dobush. Representation of the grand partition function of the cell model: The state equation in the mean-field approximation. J. Mol. Liq. 215, 58 (2016).
https://doi.org/10.1016/j.molliq.2015.12.018
M.P. Kozlovskii, I.V. Pylyuk, O.A. Dobush. The equation of state of a cell fluid model in the supercritical region. Condens. Matter Phys. 21, 43502 (2018).
https://doi.org/10.5488/CMP.21.43502
I.V. Pylyuk. Fluid critical behavior at liquid-gas phase transition: Analytic method for microscopic description. J. Mol. Liq. 310, 112933 (2020).
https://doi.org/10.1016/j.molliq.2020.112933
A.L. Rebenko. Cell gas model of classical statistical systems. Rev. Math. Phys. 25, 1330006 (2013).
https://doi.org/10.1142/S0129055X13300069
V.A. Boluh, A.L. Rebenko. Cell gas free energy as an approximation of the continuous model. J. Mod. Phys. 6, 168 (2015).
https://doi.org/10.4236/jmp.2015.62022
I.V. Pylyuk, O.A. Dobush. Equation of state of a cell fluid model with allowance for Gaussian fluctuations of the order parameter. Ukr. J. Phys. 65, 1080 (2020).
https://doi.org/10.15407/ujpe65.12.1080
I.V. Pylyuk, M.P. Kozlovskii. First-order phase transition in the framework of the cell fluid model: Regions of chemical potential variation and the corresponding densities. Ukr. J. Phys. 67, 54 (2022).
https://doi.org/10.15407/ujpe67.1.54
I.R. Yukhnovskii. Phase Transitions of the Second Order. Collective Variables Method (World Scientific, 1987) [ISBN-10: 9971500876, ISBN-13: 9789971500870].
I.R. Yukhnovskii, M.P. Kozlovskii, I.V. Pylyuk. Microscopic Theory of Phase Transitions in the Three-Dimensional Systems (Eurosvit, 2001) [in Ukrainian] [ISBN: 966-7343-26-X].
J.K. Singh, J. Adhikari, S.K. Kwak. Vapor-liquid phase coexistence curves for Morse fluids. Fluid Phase Equilib. 248, 1 (2006).
https://doi.org/10.1016/j.fluid.2006.07.010
M.P. Kozlovskii, O.A. Dobush, I.V. Pylyuk. Using a cell fluid model for the description of a phase transition in simple liquid alkali metals. Ukr. J. Phys. 62, 865 (2017).
https://doi.org/10.15407/ujpe62.10.0865
F. Hensel. Critical behaviour of metallic liquids. J. Phys.: Condens. Matter 2, SA33 (1990).
https://doi.org/10.1088/0953-8984/2/S/004
C.A. Eckert, B.L. Knutson, P.G. Debenedetti. Supercritical fluids as solvents for chemical and materials processing. Nature 383, 313 (1996).
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.