Вплив радіаційного опромінення на параметри полегшеної дифузії модельної медико-біологічної системи

Автор(и)

  • T.S. Vlasenko Institute for Safety Problems of Nuclear Power Plants, Nat. Acad. of Sci. of Ukraine
  • D.A. Gavryushenko Institute for Safety Problems of Nuclear Power Plants, Nat. Acad. of Sci. of Ukraine, Taras Shevchenko National University of Kyiv, Faculty of Physics
  • K.V. Cherevko Institute for Safety Problems of Nuclear Power Plants, Nat. Acad. of Sci. of Ukraine, Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L.A. Bulavin Institute for Safety Problems of Nuclear Power Plants, Nat. Acad. of Sci. of Ukraine, Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe68.8.525

Ключові слова:

полегшена дифузiя, коефiцiєнт дифузiї, радiацiйне опромiнення, бiологiчна система, iдеальний розчин

Анотація

В рамках нерiвноважної статистичної термодинамiки роз-винено теоретичну модель дифузiї в обмежених багато-компонентних рiдинних системах за наявностi радiацiйного опромiнення, що дозволяє визначати стацiонарнi дифузiйнi потоки з урахуванням спричинених опромiненням змiн у рiвноважнiй частинi коефiцiєнта дифузiї. Для низки модельних розчинiв проведено оцiнку ентропiйних внескiв у рiвноважну частину коефiцiєнта дифузiї, спричинених змiною термодинамiчних властивостей рiдинних систем пiд впливом радiацiйного опромiнення. Показано, що опромiнення медико-бiологiчних рiдинних систем в неперервному режимi може призводити до збiльшення насичення тканин киснем за рахунок зменшення стабiлiзацiйних ефектiв, що спостерiгаються при полегшенiй дифузiї за вiдсутностi опромiнення.

Посилання

A.J. Lomax, T. Boehringer, A. Coray, E. Egger, G. Goitein, M. Grossmann, P. Juelke, S. Lin, E. Pedroni, B. Rohrer, W. Roser, B. Rossi, B. Siegenthaler, O. Stadelmann, H. Stauble et al. Intensity modulated proton therapy: A clinical example. Med. Phys. 28, 317 (2001).

https://doi.org/10.1118/1.1350587

O. J¨akel, C.P. Karger, J. Debus. The future of heavy ion radiotherapy. Med. Phys. 35, 5653 (2008).

https://doi.org/10.1118/1.3002307

S. Horsney, T. Alper. Unexpected dose-rate effect in the killing of mice by radiation. Nature 210, 212 (1966).

https://doi.org/10.1038/210212a0

V. Favaudon, L. Caplier, V. Monceau, F. Pouzoulet, M. Sayarath, C. Fouillade, M.F. Poupon, I. Brito, P. Hup'e, J. Bourhis, J. Hall, J.J. Fontaine, M.C. Vozenin. Ultrahigh dose-rate flash irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 6, 245ra93 (2014).

https://doi.org/10.1126/scitranslmed.3008973

G. Zhou. Mechanisms underlying flash radiotherapy, a novel way to enlarge the differential responses to ionizing radiation between normal and tumor tissues. Rad. Med. Protect. 1, 35 (2020).

https://doi.org/10.1016/j.radmp.2020.02.002

P. Montay-Gruel, K. Petersson, M. Jaccard, G. Boivin, J.F. Germond, B. Petit, R. Doenlen, V. Favaudon, F. Bochud, C. Bailat, J. Bourhis, M.C. Vozenin. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiotherm. Oncol. 124, 365 (2017).

https://doi.org/10.1016/j.radonc.2017.05.003

J.D. Wilson, E.M. Hammond, G.S. Higgins, K. Petersson. Ultra-high dose rate (flash) radiotherapy: Silver bullet or fool's gold? Front. Oncol. 9, 1563 (2020).

https://doi.org/10.3389/fonc.2019.01563

P. Wilson, B. Jones, T. Yokoi, M. Hill, B. Vojnovic. Revisiting the ultra-high dose rate effect: implications for charged particle radiotherapy using protons and light ions. Brit. J. Radiol. 85, e933 (2012).

https://doi.org/10.1259/bjr/17827549

A. Chalyi, A. Vasilev, E. Zaitseva. Synaptic transmission as a cooperative phenomenon in confined systems. Condens. Matter Phys. 20, 13804 (2017).

https://doi.org/10.5488/CMP.20.13804

A.V. Chalyi, E.V. Zaitseva. Strange attractor in kinetic model of synaptic transmission. J. Phys. Stud. 11, 322 (2007).

https://doi.org/10.30970/jps.11.322

T. Abe, Y. Kazama, T. Hirano. Ion beam breeding and gene discovery for function analyses using mutants. Nucl Phys. News 25, 30 (2015).

https://doi.org/10.1080/10619127.2015.1104130

H. Ichida, R. Morita, Y. Shirakawa, Y. Hayashi, T. Abe. Targeted exome sequencing of unselected heavy-ion beamirradiated populations reveals less-biased mutation characteristics in the rice genome. Plant J. 98, 301 (2019).

https://doi.org/10.1111/tpj.14213

E. Alizadeh, A.G. Sanz, G. Garcia, L. Sanche. Radiation damage to DNA: The indirect effect of low-energy electrons. Phys. Chem. Lett. 4, 820 (2013).

https://doi.org/10.1021/jz4000998

M. Spotheim-Maurizot, M. Davidkova. Radiation damage to dna-protein complexes. J. Phys.: Conf. Ser. 261, 012010 (2011).

https://doi.org/10.1088/1742-6596/261/1/012010

K.A. Chalyy, L.A. Bulavin, A.V. Chalyi. Dynamic scaling and central component width of critical opalescence spectrum in liquids with restricted geometry. J. Phys. Stud. 9, 66 (2005).

https://doi.org/10.30970/jps.09.66

K.A. Chalyi, K. Hamano, A.V. Chalyi. Correlating properties of a simple liquid at criticality in a reduced geometry. J. Mol. Liq. 92, 153 (2001).

https://doi.org/10.1016/S0167-7322(01)00188-X

A.V. Chalyi, A.N. Vasil'ev. Strange attractor in kinetic model of synaptic transmission. J. Mol. Liq. 84, 203 (2000).

J. Murray. On the molecular mechanism of facilitated oxygen diffusion by haemoglobin and myoglobin. Proc. R. Soc. Lond. B 179, 95 (1971).

https://doi.org/10.1098/rspb.1971.0054

J. Wittenberg. The molecular mechanism of hemoglobin fascilated oxygen diffusion. J. Biol. Chem. 241, 104 (1966).

https://doi.org/10.1016/S0021-9258(18)96964-4

B. Wittenberg, J. Wittenberg, P. Caldwell. Role of myoglobin in the oxygen supply to red skeletal muscle. J. Biol. Chem. 250, 9038 (1975).

https://doi.org/10.1016/S0021-9258(19)40690-X

B. Wittenberg, J. Wittenberg. Myoglobin function reassessed. J. Experim. Biol. 206, 2011 (2003).

https://doi.org/10.1242/jeb.00243

I.A. Jelicks, B.A. Wittenberg. Nuclear magnetic resonance studies of sarcoplasmic oxygenation in the red cell-perfused rat heart. Biophys. J. 68, 2129 (1995).

https://doi.org/10.1016/S0006-3495(95)80395-4

D.N. Zubarev, V. Morozov, G. Ropke. Statistical Mechanics of Nonequilibrium Processes: Relaxation and Hydrodynamic Processes (John Wiley and Sons, 1997).

C. Ward. Effect of concentration on the rate of chemical reactions. J. Chem. Phys. 79, 5605 (1983).

https://doi.org/10.1063/1.445681

V.M. Sysoev, A.V. Chalyi. Correlation functions and dynamical structure factor of a nonisotropic medium near the critical point. Theor. Math. Phys. 19, 515 (1974).

https://doi.org/10.1007/BF01035953

V.M. Sysoev, A.V. Chalyi. Correlation functions and dynamical structure factor of a nonisotropic medium near the critical point classical fluid in a gravitational field. Theor. Math. Phys. 26, 82 (1976).

https://doi.org/10.1007/BF01038260

L.A. Bulavin, D.A. Gavryushenko, V.M. Sysoev, K.V. Cherevko. Entropy production in confined systems in the process of facilitated diffusion. A general expression for streams. Dopov. NAN Ukrainy No. 12, 70 (2012) (in Ukrainian).

L.A. Bulavin, D.A. Gavryushenko, V.M. Sysoev, K.V. Cherevko. Calculation of the entropy production function in diffusion processes in the presence of chemical reactions. Dopov. NAN Ukrainy No. 7, 67 (2012) (in Ukrainian).

D.A. Gavryushenko, O.B. Korobko, V.M. Sysoev, K.V. Cherevko. Entropy production in the process of diffusion in a plane-parallel pore in the case of Margules solution. Ukr. J. Phys. 58, 988 (2013).

https://doi.org/10.15407/ujpe58.10.0988

D.A. Gavryushenko, O.B. Korobko, V.M. Sysoev, K.V. Cherevko. Entropy production in the process of diffusion in a plane-parallel pore in the case of the Scatchard-Hamer solution. Ukr. J. Phys. 59, 732 (2014).

https://doi.org/10.15407/ujpe59.07.0732

L.A. Bulavin, D.A. Gavryushenko, O.V. Korobko, V.M. Sysoev, K.V. Cherevko. Diffusion flows and entropy production in a plane-parallel pore in the case of an ideal solution. Dopov. NAN Ukrainy No. 5, 76 (2014) (in Ukrainian).

https://doi.org/10.15407/dopovidi2014.05.076

V.M. Sysoev, I.A. Fakhretdinov, S.G. Shpyrko. Thermodynamic perturbation theory and the Gibbs potential of ternary solutions. J. Phys. Chem. 71, 2142 (1997).

V.A. Durov, E.P. Ageev. Thermodynamic Theory of Solutions (Moscow State University Publishing House, 1987) (in Russian).

D. Gavryushenko, K. Taradii. The influence of radiation exposure on the physical properties of liquids. Ukr. J. Phys. 60, 763 (2015).

https://doi.org/10.15407/ujpe60.08.0764

Y. Kolesnichenko. Distribution function for nuclear fusion reaction products in a stationary thermonuclear reactor. Nucl. Fusion 15, 35 (1975).

https://doi.org/10.1088/0029-5515/15/1/005

Y.V. Kalyuzhnyi, S.T. Cui, P.T. Cummings, H.D. Cochran. Distribution function of a simple fluid under shear: Low shear rates. Phys. Rev. E 60, 1716 (1999).

https://doi.org/10.1103/PhysRevE.60.1716

H. Gan, B. Eu. Integral equation of the dynamic paircorrelation function for nonequilibrium simple fluids. Phys. Rev. A 43, 5706 (1991).

https://doi.org/10.1103/PhysRevA.43.5706

W. Loose, S. Hess. Nonequilibrium velocity distribution function of gases: kinetic theory and molecular dynamics. Phys. Rev. A 37, 2099 (1988).

https://doi.org/10.1103/PhysRevA.37.2099

K. Takayanagi. On the theory of chemically reacting gas. Progr. Theor. Phys. 6, 486 (1951).

https://doi.org/10.1143/ptp/6.4.486

I. Draganic. Radiolysis of water: A look at its origin and occurrence in the nature. Rad. Phys. Chem. 72, 181 (2005).

https://doi.org/10.1016/j.radphyschem.2004.09.012

E. Ben-Naim, B. Machta, J. Machta. Power-law velocity distributions in granular gases. Phys. Rev. E 72, 021302 (2005).

https://doi.org/10.1103/PhysRevE.72.021302

A. Alastuey, J. Piasecki. Approach to a stationary state in an external field. J. Stat. Phys. 139, 991 (2010).

https://doi.org/10.1007/s10955-010-9976-x

A. Gervois, J. Piasecki. Stationary velocity distribution in an external field: A one-dimensional model. J. Stat. Phys. 42, 1091 (1986).

https://doi.org/10.1007/BF01010463

S.B. Zhu, J. Lee, G.W. Robinson. Non-maxwell velocity distributions in equilibrated fluids. Chem. Phys. Lett. 163, 328 (1989).

https://doi.org/10.1016/0009-2614(89)85144-9

L.A. Bulavin, K.V. Cherevko, D.A. Gavryushenko, V.M. Sysoev, T.S. Vlasenko. Radiation influence on the temperature-dependent parameters of fluids. Phys. Rev. E 93, 032133 (2016).

https://doi.org/10.1103/PhysRevE.93.032133

N. Bogolyubov. Studies In Statistical Mechanics. Vol. 1 (North-Holland, 1962).

K. Gurov. Basics Of Kinetic Theory (Bogolyubov Method) (Nauka, 1966) (in Russian).

Probability And Related Topics In Physical Sciences, Lectures in Applied Mathematics. Vol. 1. Edited by M. Kac (Interscience Publishers, Inc., 1959).

S.R. de Groot, P. Mazur. Non-Equilibrium Thermodynamics (Dover, 2011).

I. Prigogine. Etude Thermodynamique Des Phenomenes Irreversibles (Dunod, 947).

D. Gavryushenko. Influence of irradiation on condensed matter structure. Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 3, 329 (2012) (in Ukrainian).

D. Gavryushenko, V. Sysoev, T. Vlasenko. Changes in the liquids sstructure characterictcs under the irradiation. Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 2, 287 (2013) (in Ukrainian).

T. S. Vlasenko. Effect of an external action on a pair distribution function in a steady state. JETP Lett. 99, 270 (2014).

https://doi.org/10.1134/S0021364014050154

K. Cherevko, D. Gavryushenko, V. Sysoev, T. Vlasenko, L. Bulavin. On the mechanism of the radiation influence upon the structure and thermodynamic properties of water. In: Modern Problems of the Physics of Liquid Systems. Edited by L. Bulavin, L. Xu (Springer, 2019), p. 313.

https://doi.org/10.1007/978-3-030-21755-6_13

S. Uehara, H. Nikjoo. Monte Carlo track structure code for low-energy alpha-particles in water. J. Phys. Chem. B 106, 11051 (2002).

https://doi.org/10.1021/jp014004h

Опубліковано

2023-10-02

Як цитувати

Vlasenko, T., Gavryushenko, D., Cherevko, K., & Bulavin, L. (2023). Вплив радіаційного опромінення на параметри полегшеної дифузії модельної медико-біологічної системи. Український фізичний журнал, 68(8), 525. https://doi.org/10.15407/ujpe68.8.525

Номер

Розділ

Фізика рідин та рідинних систем, біофізика і медична фізика