Influence of Irradiation on the Parameters of Facilitated Diffusion in a Model Medical-Biological Systems

Authors

  • T.S. Vlasenko Institute for Safety Problems of Nuclear Power Plants, Nat. Acad. of Sci. of Ukraine
  • D.A. Gavryushenko Institute for Safety Problems of Nuclear Power Plants, Nat. Acad. of Sci. of Ukraine, Taras Shevchenko National University of Kyiv, Faculty of Physics
  • K.V. Cherevko Institute for Safety Problems of Nuclear Power Plants, Nat. Acad. of Sci. of Ukraine, Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L.A. Bulavin Institute for Safety Problems of Nuclear Power Plants, Nat. Acad. of Sci. of Ukraine, Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe68.8.525

Keywords:

facilitated diffusion, diffusion coefficient, irradiation, biological system, ideal solution

Abstract

A theoretical model of the diffusion in confined multicomponent systems under irradiation has been developed in the framework of the non-equilibrium thermodynamics formalism. The model allows the stationary diffusion flows to be determined taking the irradiation-induced changes in the equilibrium part of the diffusion coefficient into account. Entropy contributions to the equilibrium part of the diffusion coefficient due to the changes in the thermodynamic properties of liquid systems under irradiation are evaluated for a number of model solutions. It is shown that the permanent irradiation of medical-biological systems can increase the oxygen concentrations in the tissues by reducing the stabilizing effects that are observed in the facilitated diffusion regime without irradiation.

References

A.J. Lomax, T. Boehringer, A. Coray, E. Egger, G. Goitein, M. Grossmann, P. Juelke, S. Lin, E. Pedroni, B. Rohrer, W. Roser, B. Rossi, B. Siegenthaler, O. Stadelmann, H. Stauble et al. Intensity modulated proton therapy: A clinical example. Med. Phys. 28, 317 (2001).

https://doi.org/10.1118/1.1350587

O. J¨akel, C.P. Karger, J. Debus. The future of heavy ion radiotherapy. Med. Phys. 35, 5653 (2008).

https://doi.org/10.1118/1.3002307

S. Horsney, T. Alper. Unexpected dose-rate effect in the killing of mice by radiation. Nature 210, 212 (1966).

https://doi.org/10.1038/210212a0

V. Favaudon, L. Caplier, V. Monceau, F. Pouzoulet, M. Sayarath, C. Fouillade, M.F. Poupon, I. Brito, P. Hup'e, J. Bourhis, J. Hall, J.J. Fontaine, M.C. Vozenin. Ultrahigh dose-rate flash irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 6, 245ra93 (2014).

https://doi.org/10.1126/scitranslmed.3008973

G. Zhou. Mechanisms underlying flash radiotherapy, a novel way to enlarge the differential responses to ionizing radiation between normal and tumor tissues. Rad. Med. Protect. 1, 35 (2020).

https://doi.org/10.1016/j.radmp.2020.02.002

P. Montay-Gruel, K. Petersson, M. Jaccard, G. Boivin, J.F. Germond, B. Petit, R. Doenlen, V. Favaudon, F. Bochud, C. Bailat, J. Bourhis, M.C. Vozenin. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiotherm. Oncol. 124, 365 (2017).

https://doi.org/10.1016/j.radonc.2017.05.003

J.D. Wilson, E.M. Hammond, G.S. Higgins, K. Petersson. Ultra-high dose rate (flash) radiotherapy: Silver bullet or fool's gold? Front. Oncol. 9, 1563 (2020).

https://doi.org/10.3389/fonc.2019.01563

P. Wilson, B. Jones, T. Yokoi, M. Hill, B. Vojnovic. Revisiting the ultra-high dose rate effect: implications for charged particle radiotherapy using protons and light ions. Brit. J. Radiol. 85, e933 (2012).

https://doi.org/10.1259/bjr/17827549

A. Chalyi, A. Vasilev, E. Zaitseva. Synaptic transmission as a cooperative phenomenon in confined systems. Condens. Matter Phys. 20, 13804 (2017).

https://doi.org/10.5488/CMP.20.13804

A.V. Chalyi, E.V. Zaitseva. Strange attractor in kinetic model of synaptic transmission. J. Phys. Stud. 11, 322 (2007).

https://doi.org/10.30970/jps.11.322

T. Abe, Y. Kazama, T. Hirano. Ion beam breeding and gene discovery for function analyses using mutants. Nucl Phys. News 25, 30 (2015).

https://doi.org/10.1080/10619127.2015.1104130

H. Ichida, R. Morita, Y. Shirakawa, Y. Hayashi, T. Abe. Targeted exome sequencing of unselected heavy-ion beamirradiated populations reveals less-biased mutation characteristics in the rice genome. Plant J. 98, 301 (2019).

https://doi.org/10.1111/tpj.14213

E. Alizadeh, A.G. Sanz, G. Garcia, L. Sanche. Radiation damage to DNA: The indirect effect of low-energy electrons. Phys. Chem. Lett. 4, 820 (2013).

https://doi.org/10.1021/jz4000998

M. Spotheim-Maurizot, M. Davidkova. Radiation damage to dna-protein complexes. J. Phys.: Conf. Ser. 261, 012010 (2011).

https://doi.org/10.1088/1742-6596/261/1/012010

K.A. Chalyy, L.A. Bulavin, A.V. Chalyi. Dynamic scaling and central component width of critical opalescence spectrum in liquids with restricted geometry. J. Phys. Stud. 9, 66 (2005).

https://doi.org/10.30970/jps.09.66

K.A. Chalyi, K. Hamano, A.V. Chalyi. Correlating properties of a simple liquid at criticality in a reduced geometry. J. Mol. Liq. 92, 153 (2001).

https://doi.org/10.1016/S0167-7322(01)00188-X

A.V. Chalyi, A.N. Vasil'ev. Strange attractor in kinetic model of synaptic transmission. J. Mol. Liq. 84, 203 (2000).

J. Murray. On the molecular mechanism of facilitated oxygen diffusion by haemoglobin and myoglobin. Proc. R. Soc. Lond. B 179, 95 (1971).

https://doi.org/10.1098/rspb.1971.0054

J. Wittenberg. The molecular mechanism of hemoglobin fascilated oxygen diffusion. J. Biol. Chem. 241, 104 (1966).

https://doi.org/10.1016/S0021-9258(18)96964-4

B. Wittenberg, J. Wittenberg, P. Caldwell. Role of myoglobin in the oxygen supply to red skeletal muscle. J. Biol. Chem. 250, 9038 (1975).

https://doi.org/10.1016/S0021-9258(19)40690-X

B. Wittenberg, J. Wittenberg. Myoglobin function reassessed. J. Experim. Biol. 206, 2011 (2003).

https://doi.org/10.1242/jeb.00243

I.A. Jelicks, B.A. Wittenberg. Nuclear magnetic resonance studies of sarcoplasmic oxygenation in the red cell-perfused rat heart. Biophys. J. 68, 2129 (1995).

https://doi.org/10.1016/S0006-3495(95)80395-4

D.N. Zubarev, V. Morozov, G. Ropke. Statistical Mechanics of Nonequilibrium Processes: Relaxation and Hydrodynamic Processes (John Wiley and Sons, 1997).

C. Ward. Effect of concentration on the rate of chemical reactions. J. Chem. Phys. 79, 5605 (1983).

https://doi.org/10.1063/1.445681

V.M. Sysoev, A.V. Chalyi. Correlation functions and dynamical structure factor of a nonisotropic medium near the critical point. Theor. Math. Phys. 19, 515 (1974).

https://doi.org/10.1007/BF01035953

V.M. Sysoev, A.V. Chalyi. Correlation functions and dynamical structure factor of a nonisotropic medium near the critical point classical fluid in a gravitational field. Theor. Math. Phys. 26, 82 (1976).

https://doi.org/10.1007/BF01038260

L.A. Bulavin, D.A. Gavryushenko, V.M. Sysoev, K.V. Cherevko. Entropy production in confined systems in the process of facilitated diffusion. A general expression for streams. Dopov. NAN Ukrainy No. 12, 70 (2012) (in Ukrainian).

L.A. Bulavin, D.A. Gavryushenko, V.M. Sysoev, K.V. Cherevko. Calculation of the entropy production function in diffusion processes in the presence of chemical reactions. Dopov. NAN Ukrainy No. 7, 67 (2012) (in Ukrainian).

D.A. Gavryushenko, O.B. Korobko, V.M. Sysoev, K.V. Cherevko. Entropy production in the process of diffusion in a plane-parallel pore in the case of Margules solution. Ukr. J. Phys. 58, 988 (2013).

https://doi.org/10.15407/ujpe58.10.0988

D.A. Gavryushenko, O.B. Korobko, V.M. Sysoev, K.V. Cherevko. Entropy production in the process of diffusion in a plane-parallel pore in the case of the Scatchard-Hamer solution. Ukr. J. Phys. 59, 732 (2014).

https://doi.org/10.15407/ujpe59.07.0732

L.A. Bulavin, D.A. Gavryushenko, O.V. Korobko, V.M. Sysoev, K.V. Cherevko. Diffusion flows and entropy production in a plane-parallel pore in the case of an ideal solution. Dopov. NAN Ukrainy No. 5, 76 (2014) (in Ukrainian).

https://doi.org/10.15407/dopovidi2014.05.076

V.M. Sysoev, I.A. Fakhretdinov, S.G. Shpyrko. Thermodynamic perturbation theory and the Gibbs potential of ternary solutions. J. Phys. Chem. 71, 2142 (1997).

V.A. Durov, E.P. Ageev. Thermodynamic Theory of Solutions (Moscow State University Publishing House, 1987) (in Russian).

D. Gavryushenko, K. Taradii. The influence of radiation exposure on the physical properties of liquids. Ukr. J. Phys. 60, 763 (2015).

https://doi.org/10.15407/ujpe60.08.0764

Y. Kolesnichenko. Distribution function for nuclear fusion reaction products in a stationary thermonuclear reactor. Nucl. Fusion 15, 35 (1975).

https://doi.org/10.1088/0029-5515/15/1/005

Y.V. Kalyuzhnyi, S.T. Cui, P.T. Cummings, H.D. Cochran. Distribution function of a simple fluid under shear: Low shear rates. Phys. Rev. E 60, 1716 (1999).

https://doi.org/10.1103/PhysRevE.60.1716

H. Gan, B. Eu. Integral equation of the dynamic paircorrelation function for nonequilibrium simple fluids. Phys. Rev. A 43, 5706 (1991).

https://doi.org/10.1103/PhysRevA.43.5706

W. Loose, S. Hess. Nonequilibrium velocity distribution function of gases: kinetic theory and molecular dynamics. Phys. Rev. A 37, 2099 (1988).

https://doi.org/10.1103/PhysRevA.37.2099

K. Takayanagi. On the theory of chemically reacting gas. Progr. Theor. Phys. 6, 486 (1951).

https://doi.org/10.1143/ptp/6.4.486

I. Draganic. Radiolysis of water: A look at its origin and occurrence in the nature. Rad. Phys. Chem. 72, 181 (2005).

https://doi.org/10.1016/j.radphyschem.2004.09.012

E. Ben-Naim, B. Machta, J. Machta. Power-law velocity distributions in granular gases. Phys. Rev. E 72, 021302 (2005).

https://doi.org/10.1103/PhysRevE.72.021302

A. Alastuey, J. Piasecki. Approach to a stationary state in an external field. J. Stat. Phys. 139, 991 (2010).

https://doi.org/10.1007/s10955-010-9976-x

A. Gervois, J. Piasecki. Stationary velocity distribution in an external field: A one-dimensional model. J. Stat. Phys. 42, 1091 (1986).

https://doi.org/10.1007/BF01010463

S.B. Zhu, J. Lee, G.W. Robinson. Non-maxwell velocity distributions in equilibrated fluids. Chem. Phys. Lett. 163, 328 (1989).

https://doi.org/10.1016/0009-2614(89)85144-9

L.A. Bulavin, K.V. Cherevko, D.A. Gavryushenko, V.M. Sysoev, T.S. Vlasenko. Radiation influence on the temperature-dependent parameters of fluids. Phys. Rev. E 93, 032133 (2016).

https://doi.org/10.1103/PhysRevE.93.032133

N. Bogolyubov. Studies In Statistical Mechanics. Vol. 1 (North-Holland, 1962).

K. Gurov. Basics Of Kinetic Theory (Bogolyubov Method) (Nauka, 1966) (in Russian).

Probability And Related Topics In Physical Sciences, Lectures in Applied Mathematics. Vol. 1. Edited by M. Kac (Interscience Publishers, Inc., 1959).

S.R. de Groot, P. Mazur. Non-Equilibrium Thermodynamics (Dover, 2011).

I. Prigogine. Etude Thermodynamique Des Phenomenes Irreversibles (Dunod, 947).

D. Gavryushenko. Influence of irradiation on condensed matter structure. Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 3, 329 (2012) (in Ukrainian).

D. Gavryushenko, V. Sysoev, T. Vlasenko. Changes in the liquids sstructure characterictcs under the irradiation. Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 2, 287 (2013) (in Ukrainian).

T. S. Vlasenko. Effect of an external action on a pair distribution function in a steady state. JETP Lett. 99, 270 (2014).

https://doi.org/10.1134/S0021364014050154

K. Cherevko, D. Gavryushenko, V. Sysoev, T. Vlasenko, L. Bulavin. On the mechanism of the radiation influence upon the structure and thermodynamic properties of water. In: Modern Problems of the Physics of Liquid Systems. Edited by L. Bulavin, L. Xu (Springer, 2019), p. 313.

https://doi.org/10.1007/978-3-030-21755-6_13

S. Uehara, H. Nikjoo. Monte Carlo track structure code for low-energy alpha-particles in water. J. Phys. Chem. B 106, 11051 (2002).

https://doi.org/10.1021/jp014004h

Published

2023-10-02

How to Cite

Vlasenko, T., Gavryushenko, D., Cherevko, K., & Bulavin, L. (2023). Influence of Irradiation on the Parameters of Facilitated Diffusion in a Model Medical-Biological Systems. Ukrainian Journal of Physics, 68(8), 525. https://doi.org/10.15407/ujpe68.8.525

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)

<< < 1 2 3 4 > >>