Mechanism Enhancing the Emission Power of Gas-Discharge Lamps Based on Mixtures of Neon, Nitrogen, and Mercury Dichloride Vapor in the Blue-Green Spectral Interval

Authors

  • A. O. Malinina Uzhgorod National University
  • A. K. Shuaibov Uzhgorod National University
  • O. M. Malinin Uzhgorod National University

DOI:

https://doi.org/10.15407/ujpe64.9.803

Keywords:

discharge lamp, barrier discharge, radiation emission by exciplex molecules, plasma parameters, mercury dichloride, nitrogen, neon

Abstract

A mechanism enhancing the radiation power of a gas-discharge lamp based on a mixture of neon, nitrogen, and a mercury dichloride vapor in the blue-green spectral interval as compared with that for a lamp based on a mixture of only neon and a mercury dichloride vapor has been determined. The optical characteristics and the plasma parameters, as well as the value of the reduced electric field, at which the specific discharge power introduced into the excitation of exciplex molecules of mercury monochloride is maximum, are found. The research results can be used to create a more efficient exciplex lamp that emits radiation bands in the blue-green spectral interval.

References

J.H. Parks. Laser action on the B2Σ+1/2 → X2Σ+1/2 band of HgBr at 5018 ˚ A. Appl. Phys. Lett. 31, 297 (1977). https://doi.org/10.1063/1.89676

R. Burnliam. Discharge pumped mercuric halide dissociation lasers. Appl. Phys. Lett. 33, 152 (1978). https://doi.org/10.1063/1.90290

I.S. Lakoba, S.I. Yakovlenko. Active media of exciplex lasers (A review). Kvant. Elektron. 7, 677 (1980) (in Russian).

R. Burnham, E.J. Schimitschek. High-power blue-green lasers. Laser Focus 6, 54 (1981).

S.P. Bazhulin, N.G. Basov, S.N. Bugrimov, V.S. Zuev, A.S. Kamrukov, G.N. Kashnikov, N.P. Kozlov, P.A. Ovchinnikov, A.G. Opekan, V.K. Orlov, Yu.S. Protasov. Green-emitting mercury chloride laser pumped by wide-band optical radiation. Sov. J. Quant. Electron. 16, 836 (1986). https://doi.org/10.1070/QE1986v016n06ABEH006928

A.M. Boichenko, M.I. Lomaev, A.N. Panchenko et al. Ultraviolet and Vacuum-Ultraviolet Excilamps: Physics, Technology and Applications (STT, 2011) (in Russian).

A.N. Malinin. Excitation of mercury monohalides in the plasma of pulse-periodic discharge in mixtures of mercury dihalides and rare gases. Laser Phys. 7, 1032 (1997).

A.N. Malinin. The main characteristics of the plasma of pulse glow discharge in mixtures of mercury dihalides and rare gases. Laser Phys. 8, 395 (1998).

M.M. Guivan, O.M. Malinin, L.L. Shimon. Optimization of the component composition of gas-discharge HgBr-excimer lamps. Nauk. Visn. Uzhgorod. Univ. 4, 12 (1999) (in Ukrainian).

A.N. Malinin, N.N. Guivan, L.L. Shimon. Emission spectra of working mixtures of the HgBr/HgCl excimer lamp. Opt. Spektrosk. 89, 905 (2000) (in Russian). https://doi.org/10.1134/1.1335029

M.M. Guivan, O.M. Malinin, L.L. Shimon. Optimization of optical characteristics of working mixtures for HgBr and HgCl exilamps. Zh. Fiz. Dosl. 6, 74 (2002) (in Ukrainian).

M.M. Guivan, A.N. Malinin. Investigation of the process of excitation of mercury monobromide and monochloride excimer molecules in dense gas-discharge plasma. Ukr. J. Phys. 47, 24 (2002).

Yu.I. Posudin. Laser Photobiology (Vyshcha Shkola, 1989) (in Russian).

V.D. Romanenko, Yu. G. Krot, L.A. Syrenko, V.D. Solomatina. Biotechnology of Hydrobionts Cultivation (Inst. of Hydrobiology, Kyiv, 1999) (in Russian).

U. Kogelschatz. Fundamentals and Applications of Dielectric-barrier Discharges (ABB Corparate Research Ltd, 5405 Dfden, 2000).

T.E. Kuleshova, A.I. Likhachev, E.S. Pavlova et al. Interrelation between absorption spectra of plant pigments and LED illumination with various spectral compositions. Zh. Tekhn. Fiz. 88, 1285 (2018) (in Russian).

G.B. Popovych, A.O. Malinina, I.I. Aksenyuk, R.V. Grytsak. Influence of additional artificial illumination on the initial growth and development stages of tomato and cucumber seedlings. Ovochiv. Bashtann. 64, 44 (2018) (in Ukrainian). https://doi.org/10.32717/0131-0062-2018-64-44-49

G. Zissis, S. Kitsinelis. State of art on the science and technology of electrical light sources: from the past to the future. J. Phys. D 42, 173001 (2009). https://doi.org/10.1088/0022-3727/42/17/173001

U. Kogelschatz. Ultraviolet excimer radiation from none-quilibrium gas discharges and its application in photophysics, photochemistry and photobiology. J. Opt. Technol. 79, 484 (2012). https://doi.org/10.1364/JOT.79.000484

A.A.Malinina, A.K. Shuaibov, A.N.Malinin. Optical emission of atmospheric-pressure dielectric barrier discharge plasma on mercury diiodide/rare gases mixtures. IOSR J. Appl. Phys. 9, 51 (2017). https://doi.org/10.9790/4861-0901015157

V.B. Basov. LEDs: advantages and disadvantages. Elektro-Zh. 6, 34 (2010) (in Russian).

Properties of Inorganic Compounds. A Handbook. Edited by A.I. Efimov, L.P. Belorukova, I.V. Vasilkova, V.P. Chechev (Khimiya, 1983) (in Russian).

R.A. Sapozhnikov. Theoretical Photometry (Energiya, 1977) (in Russian).

R.W. Pears, A.G. Gaydon. The Identification of Molecular Spectra (Chapman and Hall, 1963).

Yu.S. Akishev, A.V. Dem'yanov, V.B. Karalnik et al. Pulsed regime of the diffusive mode of a barrier discharge in helium Fiz. Plazmy 27, 176 (2001) (in Russian). https://doi.org/10.1134/1.1348495

G.J.M. Hagelaar, L.C. Pitchford. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sourc. Sci Technol. 14, 722 (2005). https://doi.org/10.1088/0963-0252/14/4/011

https://www.bolsig.laplace.univ-tlse.fr/.

V. Kushawaha, M.J. Mahmood. Electron impact dissociation of HgX2 (X = Cl, Br, I). Appl. Phys. 62, 2173 (1987). https://doi.org/10.1063/1.339518

A.N. Malinin. Excitation of the B2Σ+1/2 state of mercury monohalides by electron impact. Laser Phys. 7, 1177 (1997).

Yu.P. Raizer, Gas Discharge Physics (Springer, 1997).

A. Mandl, J.J. Parks, C. Roxlo. Collisional quenching kinetics for the HgCl* and HgBr* (B2Σ+1/2) state. J. Chem. Phys. 72, 504 (1980). https://doi.org/10.1063/1.438934

A.N. Malinin. The efficiency of the quenching of the B2Σ+1/2 state in mercury monohalides by halogen-containing molecules in active media of HgCl, HgBr, and HgJ excimer lasers. Laser Phys. 7, 1177 (1997).

W.R. Wadt. The electronic structure of HgCl2 and HgBr2 and its relationship to photodissociation. J. Chem. Phys. 72, 2469 (1980). https://doi.org/10.1063/1.439442

W.L. Nighan, R.T. Brown. Kinetic processes in the HgBr(B → X)/HgBr2 dissociation laser. J. Appl. Phys. 53, 7201 (1982). https://doi.org/10.1063/1.331616

W.R. Wadt. The electronic structure of HgCl and HgBr. Appl. Phys. Lett. 34, 658 (1979). https://doi.org/10.1063/1.90627

V.V. Datsyuk, I.A. Izmailov, V.A. Kochelap. Vibrational relaxation of excimer molecules. Usp. Fiz. Nauk 168, 439 (1998) (in Russian). https://doi.org/10.3367/UFNr.0168.199804c.0439

Applied Atomic Collision Physics. Vol. 3: Gas Lasers. Edited by E.W. McDaniel, W.L. Nighan (Academic Press, New York, 1982).

V.V. Datsyuk, I.A. Izmailov, V.V. Naumov, V.A. Kochelap. Direct electron-impact mechanism of excitation of mercury monobromide in a double-pulse dielectric-barrier-discharge HgBr lamp. Plasma Sourc. Sci. Technol. 25, 045020 (2016). https://doi.org/10.1088/0963-0252/25/4/045020

A.C. Erlandson, T.A. Cool. On the regeneration mechanism of HgBr/2 in HgBr/HgBr2 dissociation lasers. Chem. Phys. Lett. 96, 685 (1983). https://doi.org/10.1016/0009-2614(83)80074-8

Published

2019-10-11

How to Cite

Malinina, A. O., Shuaibov, A. K., & Malinin, O. M. (2019). Mechanism Enhancing the Emission Power of Gas-Discharge Lamps Based on Mixtures of Neon, Nitrogen, and Mercury Dichloride Vapor in the Blue-Green Spectral Interval. Ukrainian Journal of Physics, 64(9), 803. https://doi.org/10.15407/ujpe64.9.803

Issue

Section

Plasma physics