Characteristics of the Nanosecond Overvoltage Discharge Between CuInSe2 Chalcopyrite Electrodes in Oxygen-Free Gas Media

  • A. K. Shuaibov Uzhgorod National University
  • A. I. Minya Uzhgorod National University
  • A. A. Malinina Uzhgorod National University
  • R. V. Gritsak Uzhgorod National University
  • A. N. Malinin Uzhgorod National University
Keywords: nanosecond overvoltage discharge, argon, nitrogen, chalcopyrite, plasma


The characteristics of the nanosecond overvoltage discharge ignited between semiconductor electrodes based on the CuInSe2 chalcopyrite compound in the argon and nitrogen atmospheres at gas pressures of 5.3–101 kPa are reported. Due to the electrode sputtering, chalcopyrite vapor enters the discharge plasma, so that some CuInSe2 molecules become destroyed, whereas the others become partially deposited in the form of thin films on solid dielectric substrates located near the plasma electrode system. The main products of the chalcopyrite molecule decomposition in the nanosecond overvoltage discharge are determined; these are atoms and singly charged ions of copper and indium in the excited and ionized states. Spectral lines emitted by copper and indium atoms and ions are proposed, which can be used to control the deposition of thin chalcopyrite films in the real-time mode. By numerically solving the Boltzmann kinetic equation for the electron energy distribution function, the electron temperature and density in the discharge, the specific losses of a discharge power for the main electronic processes, and the rate constants of electronic processes, as well as their dependences on the parameter E/N, are calculated for the plasma of vapor-gas mixtures on the basis of nitrogen and chalcopyrite. Thin chalcopyrite films that effectively absorb light in a wide spectral interval (200–800 nm) are synthesized on quartz substrates, by using the gas-discharge method, which opens new prospects for their application in photovoltaic devices.


G.F. Novikov, M.V. Gapanovich. Third-generation Cu-In-Ga-(S, Se)-based solar inverters. Usp. Fiz. Nauk 187, 173 (2017) (in Russian).

A.K. Shuaibov, A.Y. Minya, M.P. Chuchman, A.A. Malinina, A.N. Malinin, T.Z. Gomoki, Ya.Ch. Kolozvari. Optical characteristics of overstressed nanosecond discharge in atmospheric-pressure air between chalcopyrite electrodes. Plasma Res. Expr. 1, 015003 (2018).

G.A. Mesyats. Electron avalanche from metal. Usp. Fiz. Nauk 165, 601 (1995) (in Russian).

O.K. Shuaibov, A.O. Malinina, O.M. Malinin. New Gas-Discharge Methods for Obtaining Selective Ultraviolet and Visible Radiation and Synthesizing Nanostructures of Transition Metals (Goverla, 2019) (in Ukrainian).

S.V. Avtaeva, O.S. Zhdanov, A.A. Pikulev, E.A. Sosnin, V.F. Tarasenko. New Directions in Scientific Research and Application of Excilamps (STT Publishing, 2013) (in Russian).

E.Kh. Baksht, V.F. Tarasenko, Yu.V. Shut'ko, V.V. Erofeev. Point-like pulse-periodic UV radiation source with a short duration. Quant. Electron. 42, 153 (2012).

V.M. Holovey, K.P. Popovych, M.V. Prymak, M.M. Birov, V.M. Krasilinets, V.I. Sidey. X-ray induced optical absorption in Li2B4O7 and Li2B4O7:Cu single crystals and glasses. Physica B 450, 34 (2014).

V.Yu. Kozhevnikov, A.V. Kozyrev, N.M. Dmitrieva. Theoretical 0-D simulation of a high-pressure subnanosecond gas discharge. Izv. Vyssh. Ucheb. Zaved. Fiz. 57, 130 (2014) (in Russian).

R.V. Hrytsak, A.O. Malinina, O.J. Minya, O.K. Shuaibov, S.Y. Neymet. Characteristics of overstressed nanosecond discharge between electrodes from chalcopyrite in argon of atmospheric-pressure. In Abstracts of the 19th International Young Scientists Conference on Applied Physics, Taras Shevchenko National University, Kyiv, Ukraine, May 21-25 (2019), p. 37.

I.E. Kacher, A.K. Shuaibov, M.Yu. Rigan, A.I. Dashchenko. Optical diagnostics of laser evaporation of polycrystalline compound CuInS2. Teplofiz. Vys. Temp. 40, 880 (2002) (in Russian).

O.K. Shuaibov, M.P. Chuchman, L.L. Shimon, I.E. Kacher. Research of optical characteristics and parameters of laser plasma of CuInS2 polycrystalline fusion mixture and its components. Ukr. Fiz. Zh. 48, 223 (2003) (in Ukrainian).

A.K. Shuaibov, M.P. Chuchman, A.I. Dashchenko. Research of the radiation dynamics of erosive laser plasma of CuInS2 polycrystal. Pis'ma Zh. Tekhn. Fiz. 29, 23 (2003) (in Russian).

L. Geza, A. Shuaibov, Sz. Sandor, L. Elemer. Spectroscopic diagnostics of spark discharge plasma at atmospheric-pressure. J. Chem. Eng. 8, 302 (2014).

A.K. Shuaibov, A.Y. Minya, A.A. Malinina, A.N. Malinin, V. V. Danilo, M.Yu. Sichka, I.V. Shevera. Synthesis of copper oxides nanostructures by an overstressed nanosecond discharge in atmospheric-pressure air between copper electrodes. Am. J. Mech. Mater. Eng. 2, 8 (2018).

A.K. Shuaibov, A.I. Minya, Z.T. Gomoki, V.V. Danilo, P.V. Pinzenik. Characteristics of a high-current pulse discharge in air with ectonic mechanism of copper vapor injection into a discharge gap. Surf. Eng. Appl. Electrochem. 55, 65 (2019).

A.K. Shuaibov, G.E. Laslov, A.I. Minya, Z.T. Gomoki. Characteristics and parameters of nanosecond air discharge plasma between chalcopyrite electrodes. Techn. Phys. Lett. 40, 963 (2014).

R.M. Van der Horst, T. Verreycken, E.M. van Veldhuizen, P.J. Bruggerman. Time-resolved optical emission spectroscopy of nanosecond pulsed discharges in atmospheric-pressure N2 and N2/H2O mixtures. J. Phys. D 45, 345201 (2012).

D.Z. Pai, D.A. Lacoste, Ch.O. Laux. Nanosecond repetitively pulsed discharges in air at atmospheric-pressure - the spark regime. Plasma Sourc. Sci. Technol. 19, 065015 (2010).

A.S. Pashchina, A.V. Efimov, V.F. Chinnov. Optical research of multicomponent capillary discharge plasma. Supersonic outflow mode. Teplofiz. Vys. Temp. 55, 669 (2017) (in Russian).

V.F. Tarasenko, S.I. Yakovlenko. Electron runaway mechanism in dense gases and formation of powerful subnanosecond electron beams. Usp. Fiz. Nauk 174, 953 (2004) (in Russian).


M.I. Lomaev, D.V. Beloplotov, D.A. Sorokin, V.F. Tarasenko. Spectral and amplitude-time characteristics of radiation of plasma of a repetitively pulsed discharge initiated by runaway electrons. Opt. Spectrosc. 120, 171 (2016).

A.O. Malinina, R.V. Gritsak, O.K. Shuaibov, O.Y. Minya, O.M. Malinin. Pulse-periodic source of synchronized fluxes of bactericidal UV radiation and chalcopyrite (CuInSe2) clusters and nanoparticles. In Proceedings of the 8th International Conference "Medical Physics: Current State, Problems, Paths of Development. Novel Technologies", Kyiv, Ukraine, September 26-27 (2019), p. 216 (in Ukrainian).

How to Cite
Shuaibov, A., Minya, A., Malinina, A., Gritsak, R., & Malinin, A. (2020). Characteristics of the Nanosecond Overvoltage Discharge Between CuInSe2 Chalcopyrite Electrodes in Oxygen-Free Gas Media. Ukrainian Journal of Physics, 65(5), 400.
Plasma physics