Parameters of Nanosecond Overvoltage Discharge Plasma in a Narrow Air Gap between the Electrodes Containing Electrode Material Vapor

  • O. K. Shuaibov Uzhgorod National University
  • O. Y. Minya Uzhgorod National University
  • M. P. Chuchman Uzhgorod National University
  • A. O. Malinina Uzhgorod National University
  • O. M. Malinin Uzhgorod National University
  • V. V. Danilo Uzhgorod National University
  • Z. T. Gomoki Uzhgorod National University
Keywords: nanosecond discharge, air, radiation emission by atoms and ions, plasma parameters, zinc, copper, iron


Parameters of the nanosecond overvoltage discharge plasma in an air gap of (1÷5) × 10−3 m between the electrodes, which contains the vapor of an electrode material (Zn, Cu, Fe) injected into plasma due to the ectonic mechanism, have been studied. The dependences of those parameters on the ratio E/N between the electric field strength E and the particle concentration N in the discharge are calculated for the “air–copper vapor” system, by using the numerical simulation method.


  1. T.Kh. Bakst, V.F. Tarasenko, Yu.V. Shut'ko, M.V. Erofeev. Point-like pulse-periodic UV radiation source with a short pulse duration. Quant. Electr. 42, 153 (2012).

  2. S.V. Avtaeva, O.S. Zhdanova, A.A. Pikulev, E.A. Sosnin, V.F. Tarasenko. New Direction in Scientific Research and Application of Excilamps (STT Publishing, Tomsk, 2013) [ISBN: 978-593629-xxx-x].

  3. A.K. Shuaibov, G.E. Laslov, Ya.Ya. Kozak. Emission characteristics of the cathode region of nanosecond discharge in atmospheric pressure air. Opt. Spectrosk. 116, 552 (2014).

  4. A.K. Shuaibov, G.E. Laslov, A.I. Minya, Z.T. Gomoki. Characteristics and parameters of nanosecond air discharge plasma between chalcopyrite electrodes. Techn. Phys. Lett. 40, 963 (2014).

  5. A.K. Shuaibov, A.Y. Minya, Z.T. Gomoki, V.V. Danilo, R.B. Pinzenik. Parameters of a high-current pulse discharge in the air with the ectonic mechanism of copper vapor injection into the discharge gap. Elektr. Obrab. Nater. 54, 46 (2018) (in Russian).

  6. G.A. Mesyats. Ecton or electron avalanche from metal. Phys. Usp. 38, 567 (1995).

  7. A. Shuaibov, A. Minya, Z. Gomoki, R. Critzak, G. Laslov, I. Shevera. The formation of excited molecules chloride, argon, chlorine and hydroxyl radicals in the nanosecond barrier discharge. J. Electr. Engineer. 2, 96 (2014).

  8. A.K. Shuaibov, R.V.Grizak. Optical characteristics of UV-VUV lamps on the electronic-vibrational transitions of the hydroxyl radical, pumped by a nanosecond capacitive discharge. High. Volt. 2, 78 (2017).

  9. D.V. Beloplotov, V.F. Tarasenko, D.A. Sorokin, M.I. Lomaev. Formation of spherical streamers at the subnanosecond breakdown of gases under high pressures in a nonuniform electric field. Pis'ma Zh. Eksp. Teor. Fiz. 106, 627 (2017) (in Russian).

  10. D.Z. Pai, G.D. Stancu, D.A. Lacoste, Ch.O. Laux. Nanosecond repetitively pulsed discharges in air at atmospheric pressure, the glow regime. Plasma Sourc. Sci. Technol. 18, 045030 (2009).

  11. D.Z. Pai, D.A. Lacoste, Ch.O. Laux. Nanosecond repetitively pulsed discharges in air at atmospheric pressure, the spark regime. Plasma Sourc. Sci. Technol. 19, 065015 (2010).

  12. R.M. Van der Horst, T. Verreycken, E.M. van Veldhuizen, P.J. Bruggerman. Time-resolved optical emission spectroscopy of nanosecond pulsed discharges in atmospheric pressure N2 and N2/H2O mixtures. J. Phys. D 45, 345201 (2012).

  13. J.M. Palomares, A. Kohut, G. Galbacs, R. Engeln, Zs. Geretovszky. A time-resolved imaging and electrical study on a high current pressure, atmospheric pressure, spark discharge. J. Appl. Phys. 118, 233305 (2015).

  14. K.A. Prilepa, A.V. Samusenko, Yu.K. Stishkov. Methods for the calculation of the breakdown voltage for air gaps in weakly and strongly nonuniform fields. Teplofiz. Vys. Temp. 54, 693 (2016) (in Russian).

  15. F.G. Rutberg, V.V. Gusarov, V.A. Kolikov, I.P. Voskresenskaya et al. Research of physico-chemical properties of nanoparticles obtained using pulsed electric discharges in water. Zh. Tekhn. Fiz. 82, 33 (2012) (in Russian).

  16. M. Laroussi, X. Lu, M. Keidar. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. J. Appl. Phys. 122, 020901(2017).

  17. E.V. Parkevich, S.I. Tkachenko, A.V. Agafonov, A.R.Mangaleev et al. Research of the prebreakdown stage of a gas discharge in a diode with a point cathode making use of laser probing. Zh. ` Eksp. Teor. Fiz. 151, 627 (2017) (in Russian).

  18. E.V. Parkevich, A.I. Khir'yanova, A.V. Agafonov, S.I. Tkachenko et al. Peculiarities in the formation of anode plasma at the early stage of nanosecond discharge in air. Zh. ` Eksp. Teor. Fiz. 153, 504 (2018) (in Russian).

  19. V.M. Gradov, I.A. Zhelaev, S.S. Korobkov, M.V. Filippov. Ultraviolet radiation emission of pulse-periodic high-pressure discharges in xenon. Matem. Matem. Model. 6, 54 (2017) (in Russian).

  20. A. Bataller, J. Koulakis, S. Pree, S. Putterman. Nanosecond high-power dense microplasma switch for visible light. Appl. Phys. Lett. 105, 223501 (2014).

  21. V.F. Tarasenko. Runaway Electrons Preionized Diffuse Discharge (Nova Science Publ., 2014) [ISBN: 163321883X, 9781633218833].

  22. D. Levko, S. Yatom, V. Vekselman, Ya. E. Krasik. Electron emission mechanism during the nanosecond high-pressure pulsed discharge in pressurized air. Appl. Phys. Lett. 100, 084105 (2012).

  23. D. Levko. Electron kinetics in a microdischarge in nitrogen at an atmospheric pressure. J. Appl. Phys. 114, 223302 (2013).

  24. D. Levko, L.L. Raja. Early stage time evolution of a dense nanosecond microdischarge used in fast optical switching applications. Phys. Plasmas 22, 123518 (2015).

  25. O.K. Shuaibov. Multi-Electrode Corona Discharge in Gases under High Pressure (Goverla, 2015) (in Ukrainian).

  26. O.Y. Minya, O.K. Shuaibov, Z.T. Gomoki, V.V. Danilo et al. Optical parameters of nanosecond discharge in the mixture of air and zinc vapor. Visn. Uzhgorod. Univ. Fiz. 39, 93 (2016) (in Ukrainian).

  27. O.K. Shuaibov, O.Y. Minya, Z.T. Gomoki, V.V. Danilo. Windowless, Point-Source, Ultraviolet Lamp. Utility model patent U 2016 04596, 10.11.2016, Bull. No. 21.

  28. E.D. Kurbanov, A.V. Gorin. Glow regions of nanosecond pulse discharge in the atmospheric air at various potential electrode configurations. Upravl. Tekhnol. Pokryt. 9, 12 (2009) (in Russian).

  29. L.P. Babich, T.V. Loiko, V.A. Zukerman. High-voltage nanosecond discharge in dense gases at large overvoltages developing in the runaway electron mode. Usp. Fiz. Nauk 160, 49 (1990) (in Russian).

  30. V.F. Tarasenko, S.I. Yakovlenko. Electron runaway mechanism in dense gases and formation of powerful subnanosecond electron beams. Usp. Fiz. Nauk 174, 953 (2004) (in Russian).

  31. E.Kh. Baksht, A.G. Burachenko, M.I. Lomaev, A.N. Panchenko et al. Source of pulse-periodic UV radiation on the basis of volume discharge initiated in nitrogen by a beam of electron avalanches. Kvant. Elektron. 45, 366 (2015) (in Russian).

  32. A.V. Kozyrev, V.Yu. Kozhevnikov, I.D. Kostyrya, D.V. Rybka et al. Radiation emission of diffuse corona discharge in atmospheric pressure air. Opt. Atmos. Okean. 24, 1009 (2011) (in Russian).

  33. D.V. Rybka, A.G. Burachenko, V.Yu. Kozhevnikov, A.V. Kozyrev, V.F. Tarasenko. Corona discharge in atmospheric pressure air at the modulated voltage pulse. Opt. Atmos. Okean. 27, 311 (2014).

  34. V.F. Tarasenko, E.Kh. Baksht, A.G. Burachenko, M.I. Lomaev. Characteristic radiation of nitrogen at subnanosecond breakdown in a highly nonuniform electric field at the positive electrode polarity. Prikl. Fiz. 4, 49 (2016) (in Russian).

  35. P.L. Smith, C. Heise, J.R. Esmond, R.L. Kurucz. Atomic Spectral Line Database from CD-ROM 23 of R.L. Kurucz (Smithsonian Astrophys. Observatory, 1995).

  36. A.R. Striganov, N.S. Sventitskii. Tables of Spectral Lines of Neutral and Ionized Atoms (IFI/Plenum, 1968).

  37. S.I. Maksimov, A.V. Kretinina, N.S. Fomina, L.N. Gall'. Combined radiator for spectrophotometers in a spectral interval from 200 to 1100 nm. Nauchn. Priborostr. 25, 36 (2015) (in Russian).

  38. V.I. Tyutyunnikov. Spectra of ZnO superdispersed particles polarized in an electric field. East. Eur. J. Phys. 2, 64 (2015).

  39. E. Kh. Baksht, V.F. Tarasenko, Yu.V. Shut'ko, M.V. Erofeev. Point source of UV radiation with a frequency of 1 kHz and a short pulse duration. Izv. Vyssh. Ucheb. Zaved. Fiz. 11, 91 (2011) (in Russian).

  40. V.S. Kurbanismailov, O.A. Omarov, G.B. Rakhimkhanov, M.A. Arslanbekov, Kh.M. Abakarova, Ali Rashid Abbs Ali. Optical radiation emission of a pulsed volume discharge in high-pressure He. Usp. Prikl. Fiz. 2, 234 (2014) (in Russian).

  41. A.N. Gomonai. Radiative decay of autoionizing np 2-states during dielectronic recombination of Zn+ and Cd+ ions. J. Appl. Spectr. 82, 17 (2015).

  42. A.K. Shuaibov, A.Y. Minya, A.A. Malinina, A.N. Malinin, V.V. Danilo, M.Yu. Sichka, I.V. Shevera. Synthesis ofcopper oxides nanostructures by an overstressed nanosecond displacement in atmospheric pressure air between copper electrodes. Am. J. Mech. Mater. Eng. 2, 8 (2018).

  43. A.S. Pashchina, A.V. Efimov, V.F. Chinnov. Optical researches of multicomponent plasma of capillary discharge. Supersonic efflux mode. Teplofiz. Vys. Temp. 55, 669 (2017) (in Russian).

  44. http: /

  45. R.V. Semenyshin, A.N. Veklich, I.L. Babich, V.F. Boretskij. Spectroscopy peculiarities of the thermal plasma of electric arc discharge between electrodes with Zn admixtures. Adv. Space Res. 54, 1235 (2014).

  46. M.I. Lomaev, D.V. Beloplotov, D.A. Sorokin, V.F. Tarasenko. Spectral and amplitude-time characteristics of the radiation of a repetitively pulsed discharge initiated by runaway electrons, Opt. Spectrosc. 120, 171 (2016).

How to Cite
Shuaibov, O., Minya, O., Chuchman, M., Malinina, A., Malinin, O., Danilo, V., & Gomoki, Z. (2018). Parameters of Nanosecond Overvoltage Discharge Plasma in a Narrow Air Gap between the Electrodes Containing Electrode Material Vapor. Ukrainian Journal of Physics, 63(9), 790.
Plasma physics