Potential of the modified Thomas–Fermi method and its analytical representation by the example of 16O nucleus interaction with 56,58,60,62,64Ni isotopes

Authors

  • V.A. Nesterov Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe68.2.73

Keywords:

nucleus-nucleus interaction potential, modified Thomas–Fermi method, nucleon density distribution, repulsive core, analytical representation

Abstract

Nucleon density distributions and nucleus-nucleus interaction potentials of the 16O nucleus with the 56,58,60,62,64Ni isotopes have been calculated in the framework of the modified Thomas–Fermi method, i.e., considering all terms up to the second order in ħ in the quasi-classical series expansion of the kinetic energy. Skyrme forces dependent on the nucleon density are used as the nucleus-nucleus interaction. A successful parametrization of the obtained potential has been found, which allowed the latter to be presented in an analytical form.

References

R. Bass. Nuclear Reactions with Heavy Ion (SpringerVerlag, 1980).

G.R. Satchler. Direct Nuclear Reactions (Clarendon Press, 1983).

P. Frobrich, R. Lipperheide. Theory of Nuclear Reactions (Clarendon Press, 1996).

V.Yu. Denisov, V.A. Pluiko. Problems of Physics of Atomic Nucleus and Nuclear Reactions (Publishing and printing center "Kyiv University", 2013) (in Russian).

J. Blocki, J.Randrup, W.J. Swiatecki, C.F.Tsang. Proximity forces. Ann. Phys. 105, 427 (1977).

https://doi.org/10.1016/0003-4916(77)90249-4

W.D. Myers, W.J. Swiatecki. Nucleus-nucleus proximity potential and superheavy nuclei. Phys. Rev. C 62, 044610 (2000).

https://doi.org/10.1103/PhysRevC.62.044610

V.Yu. Denisov, V.A. Nesterov. Potential of interaction between nuclei and nucleon-density distribution in nuclei. Phys. Atom. Nucl. 69, 1472 (2006).

https://doi.org/10.1134/S1063778806090067

V.Yu. Denisov. Interaction potential between heavy ions. Phys. Lett. B 526, 315 (2002).

https://doi.org/10.1016/S0370-2693(01)01513-1

H.J. Krappe, J.R. Nix, A.J. Sierk. Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations. Phys. Rev. C 20, 992 (1979).

https://doi.org/10.1103/PhysRevC.20.992

V.Yu. Denisov, W. Norenberg. Entrance channel potentials in the synthesis of the heaviest nuclei. Eur. Phys. J. A 15, 375 (2002).

https://doi.org/10.1140/epja/i2002-10039-3

V.Yu. Denisov. Nucleus-nucleus potential with shell-correction contribution. Phys. Rev. C 91, 024603 (2015).

https://doi.org/10.1103/PhysRevC.91.024603

A. Winther. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594, 203 (1995).

https://doi.org/10.1016/0375-9474(95)00374-A

V.Yu. Denisov, O.I. Davidovskaya. Repulsive core potential and elastic heavy-ion collisions. Yad. Fiz. 73, 429 (2010).

https://doi.org/10.1134/S1063778810030026

V.Yu. Denisov, O.I. Davidovskaya. Repulsive core potential and elastic heavy-ion collisions. Ukr. J. Phys. 54, 669 (2009).

K.A. Brueckner, J.R. Buchler, M.M. Kelly. New theoretical approach to nuclear heavy-ion scattering. Phys. Rev. C 173, 944 (1968).

https://doi.org/10.1103/PhysRev.173.944

J. Fleckner, U. Mosel. Antisymmetrization effects in heavy ion potentials. Nucl. Phys. A 277, 170 (1977).

https://doi.org/10.1016/0375-9474(77)90268-8

O.I. Davidovskaya, V.Yu. Denisov, V.A. Nesterov. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 1. Nucleus-nucleus interaction potential. Yadern. Fiz. Energ. 11, No. 1, 25 (2010).

O.I. Davidovskaya, V.Yu. Denisov, V.A. Nesterov. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 2. The elastic scattering cross sections with and without core. Yadern. Fiz. Energ. 11, No. 1, 33 (2010).

V.Yu. Denisov, O.I. Davidovskaya. Elastic scattering of heavy ions and nucleus-nucleus potential with a repulsive core. Izv. RAN Ser. Fiz. 74, 611 (2010) (in Russian).

https://doi.org/10.3103/S1062873810040325

O.I. Davidovskaya, V.Yu. Denisov, V.A. Nesterov. Effective nucleus-nucleus potential with the contribution of the kinetic energy of nucleons, and the cross-sections of elastic scattering and subbarrier fusion. Ukr. J. Phys. 62, 473 (2017).

https://doi.org/10.15407/ujpe62.06.0473

V.A. Nesterov. Effect of the Pauli Exclusion principle and the polarization of nuclei on the potential of their interaction for the example of the 16O +16O system. Phys. At. Nucl. 76, 577 (2013).

https://doi.org/10.1134/S106377881304008X

V.Yu. Denisov, O.I. Davidovskaya. Elastic 16O +16O scattering and nucleus-nucleus potential with a repulsive core. Ukr. J. Phys. 55, 861 (2010).

O.I. Davydovska, V.Yu. Denysov, V.O. Nesterov. Nucleusnucleus potential, elastic-scattering and subbarrier-synthesis cross-sections of the 40Ca +40Ca system. Yadern. Fiz. Energ. 19, 203 (2018) (in Ukrainian).

O.I. Davydovska, V.Yu. Denisov, V.A. Nesterov. Comparison of the nucleus-nucleus potential evaluated in the double-folding and energy density approximations and the cross-sections of elastic scattering and fusion of heavy ions. Nucl. Phys. A 989, 214 (2019).

https://doi.org/10.1016/j.nuclphysa.2019.06.004

V.O. Nesterov, O.I. Davydovska, V.Yu. Denysov. Calculations of subbarrier-fusion and elastic-scattering crosssections for heavy ions using modified Thomas-Fermi approach with Skyrme forces. Yadern. Fiz. Energ. 20, 349 (2019) (in Ukrainian).

J. Bartel, P. Quentin, M. Brack, C. Guet, H.B. Hakansson. Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force. Nucl. Phys. A 386, 79 (1982).

https://doi.org/10.1016/0375-9474(82)90403-1

P. Ring and P. Schuck. The Nuclear Many-Body Problem (Springer-Verlag, 1980).

https://doi.org/10.1007/978-3-642-61852-9

M. Brack, C. Guet, H.B. Hakanson. Self-consistent semiclassical description of average nuclear properties - a link between microscopic and macroscopic models. Phys. Rep. 123, 275 (1985).

https://doi.org/10.1016/0370-1573(86)90078-5

M. Brack, R.K. Bhaduri, Semiclassical Physics (AddisonWesley Publ. Co, 1997).

V.M. Strutinsky, A.G. Magner, V.Yu. Denisov. Density distributions in nuclei. Z. Phys. A 322, 149 (1985).

https://doi.org/10.1007/BF01412028

J. Dobaczewski, W. Nazarewicz, P.G. Reinhard. Pairing interaction and self-consistent densities in neutron-rich nuclei. Nucl. Phys. A 693, 361 (2001).

https://doi.org/10.1016/S0375-9474(01)00993-9

D. Vautherin, D.M. Brink. Hartree-Fock calculations with Skyrme's interaction. I. Spherical nuclei. Phys. Rev. C 5, 626 (1972).

https://doi.org/10.1103/PhysRevC.5.626

S.A. Fayans, S.V. Tolokonnikov, E.L. Trykov, D. Zawischac. Nuclear isotope shifts within the local energy-density functional approach. Nucl. Phys. A 676, 49 (2000).

https://doi.org/10.1016/S0375-9474(00)00192-5

J.W. Negele. The mean-field theory of nuclear structure and dynamics. Rev. Mod. Phys. 54, 913 (1982).

https://doi.org/10.1103/RevModPhys.54.913

O.I. Davydovska, V.A. Nesterov, V.Yu. Denisov. The nucleus-nucleus potential within the extended Thomas-Fermi method and the cross-sections of subbarrier fusion and elastic scattering for the systems 16O +58,60,62,64Ni. Nucl. Phys. A 1002, 121994 (2020).

https://doi.org/10.1016/j.nuclphysa.2020.121994

V.A. Nesterov, O.I. Davydovska, V.Yu. Denisov. Elastic scattering cross-sections obtained on the basis of the potential of the modified Thomas-Fermi method and taking the core into account. Ukr. J. Phys. 67, 645 (2022).

A. Mukherjee, D.J. Hinde, M. Dasgupta, K. Hagino, J.O. Newton, R.D. Butt. Failure of the Woods-Saxon nuclear potential to simultaneously reproduce precise fusion and elastic scattering measurements. Phys. Rev. C 75, 044608 (2007).

https://doi.org/10.1103/PhysRevC.75.044608

C.R. Morton, A.C. Berriman, M. Dasgupta, D.J. Hinde, J.O. Newton, K. Hagino, I.J. Thompson. Coupled-channels analysis of the 16O +208Pb fusion barrier distribution. Phys. Rev. C 60, 044608 (1999).

M. Dasgupta, D.J. Hinde, A. Diaz-Torres, B. Bouriquet, C.I. Low, G.J. Milburn, J.O. Newton. Beyond the coherent coupled channels description of nuclear fusion. Phys. Rev. Lett. 99, 192701 (2007).

https://doi.org/10.1103/PhysRevLett.99.192701

S.Ya. Goroshenko, A.V. Nesterov, V.A. Nesterov. Complete numerical calculation of the interaction energy for two uniformly charged spheroids. Example of heavy ions. Nucl. Phys. At. Energ. 21, 13 (2020).

https://doi.org/10.15407/jnpae2020.01.013

Published

2023-04-20

How to Cite

Nesterov, V. (2023). Potential of the modified Thomas–Fermi method and its analytical representation by the example of 16O nucleus interaction with 56,58,60,62,64Ni isotopes. Ukrainian Journal of Physics, 68(2), 73. https://doi.org/10.15407/ujpe68.2.73

Issue

Section

Fields and elementary particles