Потенціал модифікованого методу То¬маса–Фермі та його аналітичне представлення на прикладі взаємодії 16O та ізотопів 56,58,60,62,64Ni

Автор(и)

  • V.A. Nesterov Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe68.2.73

Ключові слова:

потенцiал ядро-ядерної взаємодiї, модифiкований метод Томаса–Фермi, розподiл густини нуклонiв, кор вiдштовхування, аналiтичне представлення

Анотація

Густини розподiлу нуклонiв i потенцiали ядро-ядерної взаємодiї для ядра 16O та iзотопiв 56,58,60,62,64Ni було розра-ховано в рамках модифiкованого методу Томаса–Фермi, з урахуванням усiх доданкiв до членiв другого порядку по ħ у квазикласичному розкладi кiнетичної енергiї. В ролi нуклон-нуклонної взаємодiї використовувалися сили Скiрма, залежнi вiд густини нуклонiв. Для одержаного потенцiалу знайдено вдалу параметризацiю, що дозволяє представити його в аналiтичнiй формi.

Посилання

R. Bass. Nuclear Reactions with Heavy Ion (SpringerVerlag, 1980).

G.R. Satchler. Direct Nuclear Reactions (Clarendon Press, 1983).

P. Frobrich, R. Lipperheide. Theory of Nuclear Reactions (Clarendon Press, 1996).

V.Yu. Denisov, V.A. Pluiko. Problems of Physics of Atomic Nucleus and Nuclear Reactions (Publishing and printing center "Kyiv University", 2013) (in Russian).

J. Blocki, J.Randrup, W.J. Swiatecki, C.F.Tsang. Proximity forces. Ann. Phys. 105, 427 (1977).

https://doi.org/10.1016/0003-4916(77)90249-4

W.D. Myers, W.J. Swiatecki. Nucleus-nucleus proximity potential and superheavy nuclei. Phys. Rev. C 62, 044610 (2000).

https://doi.org/10.1103/PhysRevC.62.044610

V.Yu. Denisov, V.A. Nesterov. Potential of interaction between nuclei and nucleon-density distribution in nuclei. Phys. Atom. Nucl. 69, 1472 (2006).

https://doi.org/10.1134/S1063778806090067

V.Yu. Denisov. Interaction potential between heavy ions. Phys. Lett. B 526, 315 (2002).

https://doi.org/10.1016/S0370-2693(01)01513-1

H.J. Krappe, J.R. Nix, A.J. Sierk. Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations. Phys. Rev. C 20, 992 (1979).

https://doi.org/10.1103/PhysRevC.20.992

V.Yu. Denisov, W. Norenberg. Entrance channel potentials in the synthesis of the heaviest nuclei. Eur. Phys. J. A 15, 375 (2002).

https://doi.org/10.1140/epja/i2002-10039-3

V.Yu. Denisov. Nucleus-nucleus potential with shell-correction contribution. Phys. Rev. C 91, 024603 (2015).

https://doi.org/10.1103/PhysRevC.91.024603

A. Winther. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594, 203 (1995).

https://doi.org/10.1016/0375-9474(95)00374-A

V.Yu. Denisov, O.I. Davidovskaya. Repulsive core potential and elastic heavy-ion collisions. Yad. Fiz. 73, 429 (2010).

https://doi.org/10.1134/S1063778810030026

V.Yu. Denisov, O.I. Davidovskaya. Repulsive core potential and elastic heavy-ion collisions. Ukr. J. Phys. 54, 669 (2009).

K.A. Brueckner, J.R. Buchler, M.M. Kelly. New theoretical approach to nuclear heavy-ion scattering. Phys. Rev. C 173, 944 (1968).

https://doi.org/10.1103/PhysRev.173.944

J. Fleckner, U. Mosel. Antisymmetrization effects in heavy ion potentials. Nucl. Phys. A 277, 170 (1977).

https://doi.org/10.1016/0375-9474(77)90268-8

O.I. Davidovskaya, V.Yu. Denisov, V.A. Nesterov. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 1. Nucleus-nucleus interaction potential. Yadern. Fiz. Energ. 11, No. 1, 25 (2010).

O.I. Davidovskaya, V.Yu. Denisov, V.A. Nesterov. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 2. The elastic scattering cross sections with and without core. Yadern. Fiz. Energ. 11, No. 1, 33 (2010).

V.Yu. Denisov, O.I. Davidovskaya. Elastic scattering of heavy ions and nucleus-nucleus potential with a repulsive core. Izv. RAN Ser. Fiz. 74, 611 (2010) (in Russian).

https://doi.org/10.3103/S1062873810040325

O.I. Davidovskaya, V.Yu. Denisov, V.A. Nesterov. Effective nucleus-nucleus potential with the contribution of the kinetic energy of nucleons, and the cross-sections of elastic scattering and subbarrier fusion. Ukr. J. Phys. 62, 473 (2017).

https://doi.org/10.15407/ujpe62.06.0473

V.A. Nesterov. Effect of the Pauli Exclusion principle and the polarization of nuclei on the potential of their interaction for the example of the 16O +16O system. Phys. At. Nucl. 76, 577 (2013).

https://doi.org/10.1134/S106377881304008X

V.Yu. Denisov, O.I. Davidovskaya. Elastic 16O +16O scattering and nucleus-nucleus potential with a repulsive core. Ukr. J. Phys. 55, 861 (2010).

O.I. Davydovska, V.Yu. Denysov, V.O. Nesterov. Nucleusnucleus potential, elastic-scattering and subbarrier-synthesis cross-sections of the 40Ca +40Ca system. Yadern. Fiz. Energ. 19, 203 (2018) (in Ukrainian).

O.I. Davydovska, V.Yu. Denisov, V.A. Nesterov. Comparison of the nucleus-nucleus potential evaluated in the double-folding and energy density approximations and the cross-sections of elastic scattering and fusion of heavy ions. Nucl. Phys. A 989, 214 (2019).

https://doi.org/10.1016/j.nuclphysa.2019.06.004

V.O. Nesterov, O.I. Davydovska, V.Yu. Denysov. Calculations of subbarrier-fusion and elastic-scattering crosssections for heavy ions using modified Thomas-Fermi approach with Skyrme forces. Yadern. Fiz. Energ. 20, 349 (2019) (in Ukrainian).

J. Bartel, P. Quentin, M. Brack, C. Guet, H.B. Hakansson. Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force. Nucl. Phys. A 386, 79 (1982).

https://doi.org/10.1016/0375-9474(82)90403-1

P. Ring and P. Schuck. The Nuclear Many-Body Problem (Springer-Verlag, 1980).

https://doi.org/10.1007/978-3-642-61852-9

M. Brack, C. Guet, H.B. Hakanson. Self-consistent semiclassical description of average nuclear properties - a link between microscopic and macroscopic models. Phys. Rep. 123, 275 (1985).

https://doi.org/10.1016/0370-1573(86)90078-5

M. Brack, R.K. Bhaduri, Semiclassical Physics (AddisonWesley Publ. Co, 1997).

V.M. Strutinsky, A.G. Magner, V.Yu. Denisov. Density distributions in nuclei. Z. Phys. A 322, 149 (1985).

https://doi.org/10.1007/BF01412028

J. Dobaczewski, W. Nazarewicz, P.G. Reinhard. Pairing interaction and self-consistent densities in neutron-rich nuclei. Nucl. Phys. A 693, 361 (2001).

https://doi.org/10.1016/S0375-9474(01)00993-9

D. Vautherin, D.M. Brink. Hartree-Fock calculations with Skyrme's interaction. I. Spherical nuclei. Phys. Rev. C 5, 626 (1972).

https://doi.org/10.1103/PhysRevC.5.626

S.A. Fayans, S.V. Tolokonnikov, E.L. Trykov, D. Zawischac. Nuclear isotope shifts within the local energy-density functional approach. Nucl. Phys. A 676, 49 (2000).

https://doi.org/10.1016/S0375-9474(00)00192-5

J.W. Negele. The mean-field theory of nuclear structure and dynamics. Rev. Mod. Phys. 54, 913 (1982).

https://doi.org/10.1103/RevModPhys.54.913

O.I. Davydovska, V.A. Nesterov, V.Yu. Denisov. The nucleus-nucleus potential within the extended Thomas-Fermi method and the cross-sections of subbarrier fusion and elastic scattering for the systems 16O +58,60,62,64Ni. Nucl. Phys. A 1002, 121994 (2020).

https://doi.org/10.1016/j.nuclphysa.2020.121994

V.A. Nesterov, O.I. Davydovska, V.Yu. Denisov. Elastic scattering cross-sections obtained on the basis of the potential of the modified Thomas-Fermi method and taking the core into account. Ukr. J. Phys. 67, 645 (2022).

A. Mukherjee, D.J. Hinde, M. Dasgupta, K. Hagino, J.O. Newton, R.D. Butt. Failure of the Woods-Saxon nuclear potential to simultaneously reproduce precise fusion and elastic scattering measurements. Phys. Rev. C 75, 044608 (2007).

https://doi.org/10.1103/PhysRevC.75.044608

C.R. Morton, A.C. Berriman, M. Dasgupta, D.J. Hinde, J.O. Newton, K. Hagino, I.J. Thompson. Coupled-channels analysis of the 16O +208Pb fusion barrier distribution. Phys. Rev. C 60, 044608 (1999).

M. Dasgupta, D.J. Hinde, A. Diaz-Torres, B. Bouriquet, C.I. Low, G.J. Milburn, J.O. Newton. Beyond the coherent coupled channels description of nuclear fusion. Phys. Rev. Lett. 99, 192701 (2007).

https://doi.org/10.1103/PhysRevLett.99.192701

S.Ya. Goroshenko, A.V. Nesterov, V.A. Nesterov. Complete numerical calculation of the interaction energy for two uniformly charged spheroids. Example of heavy ions. Nucl. Phys. At. Energ. 21, 13 (2020).

https://doi.org/10.15407/jnpae2020.01.013

Опубліковано

2023-04-20

Як цитувати

Nesterov, V. (2023). Потенціал модифікованого методу То¬маса–Фермі та його аналітичне представлення на прикладі взаємодії 16O та ізотопів 56,58,60,62,64Ni. Український фізичний журнал, 68(2), 73. https://doi.org/10.15407/ujpe68.2.73

Номер

Розділ

Поля та елементарні частинки