Subbarrier-Fusion and Elastic-Scattering Cross-Sections Calculated on the Basis of the Nucleus-Nucleus Potential in the Framework of the Modified Thomas–Fermi Method

Authors

  • V.A. Nesterov Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine
  • O.I. Davydovska Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine
  • V.Yu. Denisov Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe66.10.857

Keywords:

nucleus-nucleus interaction potential, modified Thomas–Fermi method, nucleon density distribution, cross-section, subbarrier fusion, elastic scattering

Abstract

The nucleon density distributions and the nucleus-nucleus interaction potentials have been calculated for the 16O + 208Pb and 12C + 208Pb reactions using the modified Thomas–Fermi method, in which all terms up to h2-ones in the quasiclassical series expansion of the kinetic energy are taken into account. Skyrme forces depending on the nucleon density are used as the nucleon-nucleon interaction. On the basis of the obtained potentials, the cross-sections of subbarrier fusion and elastic scattering are calculated and agree well with the latest experimental data.

Author Biography

O.I. Davydovska, Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine

Nuclear structure department, senior researcher, PhD, Doctor of Science

References

R. Bass. Nuclear Reactions with Heavy Ion (Springer, 1980) [ISBN: 978-3-540-09611-5].

G.R. Satchler. Direct Nuclear Reactions (Clarendon Press, 1983) [ISBN-13: 978-0198512691, ISBN-10: 0198512694].

P. Frobrich, R. Lipperheide. Theory of Nuclear Reactions (Clarendon Press, 1996) [ISBN: 9780198537830].

V.Yu. Denisov, V.A. Plyuiko. Problems of the Physics of Atomic Nucleus and Nuclear Reactions (Kyiv University, 2013) (in Russian).

J. Blocki, J.Randrup, W.J. Swiatecki, C.F.Tsang. Proximity forces. Ann. Phys. 105, 427 (1977).

https://doi.org/10.1016/0003-4916(77)90249-4

W.D. Myers and W.J. Swiatecki. Nucleus-nucleus proximity potential and superheavy nuclei. Phys. Rev. C 62, 044610 (2000).

https://doi.org/10.1103/PhysRevC.62.044610

V.Yu. Denisov and V.A. Nesterov. Potential of interactionbetween nuclei and nucleon-density distribution in nuclei. Phys. Atom. Nucl. 69, 1472 (2006).

https://doi.org/10.1134/S1063778806090067

V.Yu. Denisov. Interaction potential between heavy ions. Phys. Lett. B 526, 315 (2002).

https://doi.org/10.1016/S0370-2693(01)01513-1

H.J. Krappe, J.R. Nix, A.J. Sierk. Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations. Phys. Rev. C 20, 992 (1979).

https://doi.org/10.1103/PhysRevC.20.992

V.Yu. Denisov, W. Norenberg. Entrance channel potentials in the synthesis of the heaviest nuclei. Eur. Phys. J. A 15, 375 (2002).

https://doi.org/10.1140/epja/i2002-10039-3

V.Yu. Denisov. Nucleus-nucleus potential with shellcorrection contribution. Phys. Rev. С 91, 024603 (2015).

https://doi.org/10.1103/PhysRevC.91.024603

A. Winther. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594, 203 (1995).

https://doi.org/10.1016/0375-9474(95)00374-A

V.Yu. Denisov, O.I. Davidovskaya. Repulsive core potentialand elastic heavy-ion collisions. Yad. Fiz. 73, 429 (2010).

https://doi.org/10.1134/S1063778810030026

V.Yu. Denisov, O.I. Davidovskaya. Repulsive core potential and elastic heavy-ion collisions. Ukr. J. Phys. 54, 669 (2009).

K.A. Brueckner, J.R. Buchler, M.M. Kelly. New theoretical approach to nuclear heavy-ion scattering. Phys. Rev. C 173, 944 (1968).

https://doi.org/10.1103/PhysRev.173.944

J. Fleckner, U. Mosel. Antisymmetrization effects in heavy ion potentials. Nucl. Phys. A 277, 170 (1977).

https://doi.org/10.1016/0375-9474(77)90268-8

O.I. Davidovskaya, V.Yu. Denisov, V.A. Nesterov. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 1. Nucleus-nucleus interaction potential. Yad. Fiz. Energ. 11, No. 1, 25 (2010).

O.I. Davidovskaya, V.Yu. Denisov, V.A. Nesterov. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 2. The elastic scattering cross sections with and without core. Yad. Fiz. Energ. 11, No. 1, 33 (2010).

V.Yu. Denisov, O.I. Davidovskaya. Elastic scattering of heavy ions and the nucleus-nucleus potential with a repulsive core. Izv. Ross.Akad. Nauk Ser. Phys. 74, 611 (2010) (in Russian).

https://doi.org/10.3103/S1062873810040325

O.I. Davidovskaya, V.Yu. Denisov, V.A. Nesterov. Effective nucleus-nucleus potential with the contribution of the kinetic energy of nucleons, and the cross-sections of elastic scattering and subbarrier fusion. Ukr. J. Phys. 62, 473 (2017).

https://doi.org/10.15407/ujpe62.06.0473

V.A. Nesterov. Effect of the Pauli exclusion principle and the polarization of nuclei on the potential of their interaction for the example of the 16O + 16O system. Phys. At. Nucl. 76, 577 (2013).

https://doi.org/10.1134/S106377881304008X

V.Yu. Denisov, O.I. Davidovskaya. Elastic 16O + 16O scattering and nucleus-nucleus potential with a repulsive core. Ukr. J. Phys. 55, 861 (2010).

O.I. Davidovskaya, V.Yu. Denisov, V.O. Nesterov. Nucleus-nucleus potential, elastic-scattering and subbarrierfusion cross-sections for the 40Ca + 40Ca system. Yad. Fiz. Energ. 19, 203 (2018) (in Ukrainian).

https://doi.org/10.15407/jnpae2018.03.203

O.I. Davydovska, V.Yu. Denisov, V.A. Nesterov. Comparison of the nucleus-nucleus potential evaluated in the double-folding and energy density approximations and the cross-sections of elastic scattering and fusion of heavy ions. Nucl. Phys. A 989, 214 (2019).

https://doi.org/10.1016/j.nuclphysa.2019.06.004

V.O. Nesterov, O.I. Davydovska, V.Yu. Denisov. Calculations of the subbarrier-fusion and elastic-scattering crosssections for heavy ions using the modified Thomas-Fermi potential with Skyrme forces. Yad. Fiz. Energ. 20, 349 (2019) (in Ukrainian).

P. Ring, P. Schuck. The Nuclear Many-Body Problem (Springer-Verlag, 1980) [ISBN: 978-3-540-21206-5].

https://doi.org/10.1007/978-3-642-61852-9

M. Brack, C. Guet, H.B. Hakanson. Self-consistent semiclassical description of average nuclear properties - a link between microscopic and macroscopic models. Phys. Rep. 123, 275 (1985).

https://doi.org/10.1016/0370-1573(86)90078-5

M. Brack, R.K. Bhaduri, Semiclassical Physics (AddisonWesley, 1997) [ISBN-10: 0813340845; ISBN-13: 978-0813340845].

V.M. Strutinsky, A.G. Magner, V.Yu. Denisov. Density distributions in nuclei. Z. Phys. A 322, 149 (1985).

https://doi.org/10.1007/BF01412028

J. Dobaczewski, W. Nazarewicz, P.G. Reinhard. Pairing interaction and self-consistent densities in neutron-rich nuclei. Nucl. Phys. A 693, 361 (2001).

https://doi.org/10.1016/S0375-9474(01)00993-9

D. Vautherin, D.M. Brink. Hartree-Fock calculations with Skyrme's interaction. I. Spherical nuclei. Phys. Rev. C 5, 626 (1972).

https://doi.org/10.1103/PhysRevC.5.626

J. Bartel, P. Quentin, M. Brack, C. Guet, H.B. H˚akansson. Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force. Nucl. Phys. A 386, 79 (1982).

https://doi.org/10.1016/0375-9474(82)90403-1

S.A. Fayans, S.V. Tolokonnikov, E.L. Trykov, D. Zawischac. Nuclear isotope shifts within the local energy-density functional approach. Nucl. Phys. A 676, 49 (2000).

https://doi.org/10.1016/S0375-9474(00)00192-5

J.W. Negele. The mean-field theory of nuclear structure and dynamics. Rev. Mod. Phys. 54, 913 (1982).

https://doi.org/10.1103/RevModPhys.54.913

T.H.R. Skyrme. The effective nuclear potential. Nucl. Phys. 9, 615 (1959).

https://doi.org/10.1016/0029-5582(58)90345-6

H. Feshbach. The optical model and its justification. Annu. Rev. Nucl. Sci. 8, 49 (1958).

https://doi.org/10.1146/annurev.ns.08.120158.000405

O.I. Davydovska, V.A. Nesterov, V.Yu. Denisov. The nucleus-nucleus potential within the extended Thomas-Fermi method and the cross-sections of subbarrier fusion and elastic scattering for the systems 16O + 58,60,62,64Ni. Nucl. Phys. A 1002, 121994 (2020).

https://doi.org/10.1016/j.nuclphysa.2020.121994

K. Hagino, N. Rowley, A.T. Kruppa. A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Comput. Phys. Commun. 123, 143 (1999).

https://doi.org/10.1016/S0010-4655(99)00243-X

B. Pritychenko, M. Birch, B. Singh, M. Horoi. Tables of E2 transition probabilities from the first 2+ image states in even-even nuclei. At. Data Nucl. Data Tabl. 107, 1 (2016).

https://doi.org/10.1016/j.adt.2015.10.001

T. Kibedi, R.H. Spear. Reduced electric-octupole transition probabilities, B(E3; 0+1→3−1) - an update. At. Data Nucl. Data Tabl. 80, 35 (2002).

https://doi.org/10.1006/adnd.2001.0871

S. Raman, C.W. Nestor, P. Tikkanen. Transition probability from the ground to the first excited 2+ state of eveneven nuclei. At. Data Nucl. Data Tabl. 78, 1 (2001).

https://doi.org/10.1006/adnd.2001.0858

A. Mukherjee, D.J. Hinde, M. Dasgupta, K. Hagino, J.O. Newton, R.D. Butt. Failure of the Woods-Saxon nuclear potential to simultaneously reproduce precise fusion and elastic scattering measurements. Phys. Rev. C 75, 044608 (2007).

https://doi.org/10.1103/PhysRevC.75.044608

C.R. Morton, A.C. Berriman, M. Dasgupta, D.J. Hinde, J.O. Newton, K. Hagino, I.J. Thompson. Coupled-channels analysis of the 16O + 208Pb fusion barrier distribution. Phys. Rev. C 60, 044608 (1999).

https://doi.org/10.1103/PhysRevC.60.044608

M. Dasgupta, D.J. Hinde, A. Diaz-Torres, B. Bouriquet, C.I. Low, G.J. Milburn, J.O. Newton. Beyond the coherent coupled channels description of nuclear fusion. Phys. Rev. Lett. 99, 192701 (2007).

https://doi.org/10.1103/PhysRevLett.99.192701

V.P. Rudakov, K.P. Artemov, Yu.A. Glukhov, S.A. Goncharov, A.S. Demyanova, A.A. Ogloblin, V.V. Paramonov, M.V. Rozhkov. Elastic 12C + 208Pb and 16O + 208Pb scattering and the form of the potential barrier. Bull. Russ. Acad. Sci. Phys. 65, 57 (2001).

Published

2021-11-01

How to Cite

Nesterov, V., Davydovska, O., & Denisov, V. (2021). Subbarrier-Fusion and Elastic-Scattering Cross-Sections Calculated on the Basis of the Nucleus-Nucleus Potential in the Framework of the Modified Thomas–Fermi Method. Ukrainian Journal of Physics, 66(10), 857. https://doi.org/10.15407/ujpe66.10.857

Issue

Section

Optics, atoms and molecules