Elastic Scattering Cross-Sections Obtained on the Basis of the Potential of the Modified Thomas–Fermi Method and Taking the Core into Account

Authors

  • V.A. Nesterov Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine
  • O.I. Davydovska Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine
  • V.Yu. Denisov Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe67.9.645

Keywords:

nucleus-nucleus interaction potential, modified Thomas–Fermi method, nucleon density distribution, cross-section, repulsive core, elastic scattering

Abstract

Nucleon density distributions and nucleus-nucleus interaction potentials for the reactions 16O + 40Ca, 16O + 56Fe, and 16O + 90Zr have been calculated in the framework of the modified Thomas–Fermi method and considering all terms up to the second order in ~ in the quasi-classical expansion of the kinetic energy. Skyrme forces dependent on the nucleon density are used as the nucleon-nucleon interaction. A parametrization of the nucleus-nucleus interaction potential, which well describes the potential value calculated within the modified Thomas–Fermi approach with density-dependent Skyrme forces, is found. On the basis of the obtained potentials, the cross-sections of elastic scattering are calculated in a good agreement with experimental data.

References

R. Bass. Nuclear Reactions with Heavy Ion (Springer, 1980) [ISBN: 978-3-642-05718-2].

G.R. Satchler. Direct Nuclear Reactions (Clarendon Press, 1983) [ISBN-13: 978-0198512691, ISBN-10: 0198512694].

P. Frobrich, R. Lipperheide. Theory of Nuclear Reactions (Clarendon Press, 1996) [ISBN: 9780198537830].

V.Yu. Denisov, V.A. Plujko. Problems of Nuclear Physics and Physics of Nuclear Reactions (Kyiv University Publ. Center, 2013) (in Russian).

J. Blocki, J.Randrup, W.J. Swiatecki, C.F.Tsang. Proximity forces. Ann. Phys. 105, 427 (1977).

https://doi.org/10.1016/0003-4916(77)90249-4

W.D. Myers, W.J. Swiatecki. Nucleus-nucleus proximity potential and superheavy nuclei. Phys. Rev. C 62, 044610 (2000).

https://doi.org/10.1103/PhysRevC.62.044610

V.Yu. Denisov, V.A. Nesterov. Potential of interaction between nuclei and nucleon-density distribution in nuclei. Phys. Atom. Nucl. 69, 1472 (2006).

https://doi.org/10.1134/S1063778806090067

V.Yu. Denisov. Interaction potential between heavy ions. Phys. Lett. B 526, 315 (2002).

https://doi.org/10.1016/S0370-2693(01)01513-1

H.J. Krappe, J.R. Nix, A.J. Sierk. Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations. Phys. Rev. C 20, 992 (1979).

https://doi.org/10.1103/PhysRevC.20.992

V.Yu. Denisov, W. Norenberg. Entrance channel potentialsin the synthesis of the heaviest nuclei. Eur. Phys. J. A 15, 375 (2002).

https://doi.org/10.1140/epja/i2002-10039-3

V.Yu. Denisov. Nucleus-nucleus potential with shell-correction contribution. Phys. Rev. C 91, 024603 (2015).

https://doi.org/10.1103/PhysRevC.91.024603

A. Winther. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594, 203 (1995).

https://doi.org/10.1016/0375-9474(95)00374-A

V.Yu. Denisov, O.I. Davidovskaya. Repulsive core potential and elastic heavy-ion collisions. Yad. Fiz. 73, 429 (2010).

https://doi.org/10.1134/S1063778810030026

V.Yu. Denisov, O.I. Davidovskaya. Repulsive core potential and elastic heavy-ion collisions. Ukr. J. Phys. 54, 669 (2009).

K.A. Brueckner, J.R. Buchler, M.M. Kelly. New theoretical approach to nuclear heavy-ion scattering. Phys. Rev. C 173, 944 (1968).

https://doi.org/10.1103/PhysRev.173.944

J. Fleckner, U. Mosel. Antisymmetrization effects in heavy ion potentials. Nucl. Phys. A 277, 170 (1977).

https://doi.org/10.1016/0375-9474(77)90268-8

O.I. Davidovskaya, V.Yu. Denisov, V.A. Nesterov. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 1. Nucleus-nucleus interaction potential. Yadern. Fiz. Energ. 11, No. 1, 25 (2010).

O.I. Davidovskaya, V.Yu. Denisov, V.A. Nesterov. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 2. The elastic scattering cross sections with and without core. Yadern. Fiz. Energ. 11, No. 1, 33 (2010).

V.Yu. Denisov, O.I. Davidovskaya. Elastic scattering of heavy ions and nucleus-nucleus potential with a repulsive core. Bull. Russ. Acad. Sci. Phys. 74, 611 (2010).

https://doi.org/10.3103/S1062873810040325

O.I. Davidovskaya, V.Yu. Denisov, V.A. Nesterov. Effective nucleus-nucleus potential with the contribution of the kinetic energy of nucleons, and the cross-sections of elastic scattering and subbarrier fusion. Ukr. J. Phys. 62, 473 (2017).

https://doi.org/10.15407/ujpe62.06.0473

V.A. Nesterov. Effect of the Pauli Exclusion Principle and the Polarization of Nuclei on the Potential of Their Interaction for the Example of the 16O+16O System. Phys. At. Nucl. 76, 577 (2013).

https://doi.org/10.1134/S106377881304008X

V.Yu. Denisov, O.I. Davidovskaya. Elastic 16O+16O scattering and nucleus-nucleus potential with a repulsive core. Ukr. J. Phys. 55, 861 (2010).

O.I. Davydovska, V.Yu. Denisov, V.O. Nesterov. Nucleusnucleus potential, the elastic scattering and subbarrier fusion cross sections for the system 40Ca + 40Ca. Yadern. Fiz. Energ. 19, 203 (2018).

O.I. Davydovska, V.Yu. Denisov, V.A. Nesterov. Comparison of the nucleus-nucleus potential evaluated in the double-folding and energy density approximations and the cross-sections of elastic scattering and fusion of heavy ions. Nucl. Phys. A 989, 214 (2019).

https://doi.org/10.1016/j.nuclphysa.2019.06.004

V.O. Nesterov, O.I. Davydovska, V.Yu. Denisov. Calculation of the cross-sections of sub-barrier fusion and elastic scattering of heavy ions using the modified Thomas-Fermi approach with the Skyrme force. Yadern. Fiz. Energ. 20, No. 4, 349 (2019).

https://doi.org/10.15407/jnpae2019.04.349

P. Ring, P. Schuck. The Nuclear Many-Body Problem. (Springer-Verlag, 1980) [ISBN: 978-3-540-21206-5].

https://doi.org/10.1007/978-3-642-61852-9

M. Brack, C. Guet, H.B. Hakanson. Self-consistent semiclassical description of average nuclear properties - a link between microscopic and macroscopic models. Phys. Rep. 123, 275 (1985).

https://doi.org/10.1016/0370-1573(86)90078-5

M. Brack, R.K. Bhaduri, Semiclassical Physics. (AddisonWesley Publ. Co, 1997) [ISBN-10: 0813340845; ISBN-13: 978-0813340845].

V.M. Strutinsky, A.G. Magner, V.Yu. Denisov. Density distributions in nuclei. Z. Phys. A 322, 149 (1985).

https://doi.org/10.1007/BF01412028

J. Dobaczewski, W. Nazarewicz, P.G. Reinhard. Pairing interaction and self-consistent densities in neutron-rich nuclei. Nucl. Phys. A 693, 361 (2001).

https://doi.org/10.1016/S0375-9474(01)00993-9

D. Vautherin, D.M. Brink. Hartree-Fock calculations with Skyrme's interaction. I. Spherical nuclei. Phys. Rev. C 5, 626 (1972).

https://doi.org/10.1103/PhysRevC.5.626

J. Bartel, P. Quentin, M. Brack, C. Guet, H.B. Hakansson. Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force. Nucl. Phys. A 386, 79 (1982).

https://doi.org/10.1016/0375-9474(82)90403-1

S.A. Fayans, S.V. Tolokonnikov, E.L. Trykov, D. Zawischac. Nuclear isotope shifts within the local energy-density functional approach. Nucl. Phys. A 676, 49 (2000).

https://doi.org/10.1016/S0375-9474(00)00192-5

J.W. Negele. The mean-field theory of nuclear structure and dynamics. Rev. Mod. Phys. 54, 913 (1982).

https://doi.org/10.1103/RevModPhys.54.913

T.H.R. Skyrme. The effective nuclear potential. Nucl. Phys. 9, 615 (1959).

https://doi.org/10.1016/0029-5582(58)90345-6

H. Feshbach. The optical model and its justification. Annu. Rev. Nucl. Sci. 8, 49 (1958).

https://doi.org/10.1146/annurev.ns.08.120158.000405

H. Friedrich, L.F. Canto. Effective nucleus-nucleus potentials derived from the generator coordinate method. Nucl. Phys. A 291, 249 (1977).

https://doi.org/10.1016/0375-9474(77)90210-X

S. Hossain, M.N.A. Abdullah, Md. Zulfiker Rahman, A.K. Basak, F.B. Malik. Non-monotonic potentials for 6Li elastic scattering at 88 MeV. Phys. Scr. 87, 015201 (2013).

https://doi.org/10.1088/0031-8949/87/01/015201

S. Hossain, Md. Masum Billah, M.M.B. Azad, F. Parvin. Non-monotonic potential description of alpha-Zr refractive elastic scattering. Physica G 40, 105109 (2013).

https://doi.org/10.1088/0954-3899/40/10/105109

S. Hossain, A.S.B. Tariq, A. Nilima, M. Sujan Islam, R. Majumder, M.A. Sayed, M.M. Billah, M.M.B. Azad, M.A. Uddin, I. Reichstein, F.B. Malik, A.K. Basak. Dependence of the 16O+16O nuclear potential on nuclear incompressibility. Phys. Rev. C 91, 064613 (2015).

https://doi.org/10.1103/PhysRevC.91.064613

S. Misicu, H. Esbensen. Hindrance of heavy-ion fusion due to nuclear incompressibility. Phys. Rev. Lett. 96, 112701 (2006).

https://doi.org/10.1103/PhysRevLett.96.112701

S. Misicu, H. Esbensen. Signature of shallow potentials in deep sub-barrier fusion reactions. Phys. Rev. C 75, 034606 (2007).

https://doi.org/10.1103/PhysRevC.75.034606

S. Misicu, F. Carstoiu. Absence of a maximum in the S factor at deep sub-barrier energies in the fusion reaction 40Ca + 40Ca. Phys. Rev. C 84, 051601(R) (2011).

https://doi.org/10.1103/PhysRevC.84.051601

O.I. Davydovska, V.A. Nesterov, V.Yu. Denisov. The nucleus-nucleus potential within the extended Thomas-Fermi method and the cross-sections of subbarrier fusion and elastic scattering for the systems 16O+58,60,62,64Ni. Nucl. Phys. A 1002, 121994 (2020).

https://doi.org/10.1016/j.nuclphysa.2020.121994

J. Orloff, W.W. Daehnick. Elastic scattering of 16O by 48Ti, 40Ca, 27Al, 12C, 7Li, and 6Li. Phys. Rev. C 3, 430 (1971).

K.E. Rehm, W. Henning, J.R. Erskine, D.G. Kovar, M.H. Macfarlane, S.C. Pieper and M. Rhoades-Brown. Inelastic scattering of 16O from 40,42,44,48Ca. Phys. Rev. C 25, 1915 (1982).

https://doi.org/10.1103/PhysRevC.25.1915

K.E. Rehm, J. Gehring, B. Glagola, W.C. Ma, W. Phillips, F.L.H. Wolfs. Energy dependence of one- and two-particle transfer reactions in the system 16O+90Zr. Z. Phys. A A340, 281 (1991).

https://doi.org/10.1007/BF01294676

A.W. Obst, D.L. McShan, R.H. Davis. Elastic scattering of 16O by 56Fe, 70,74Ge, and 90Zr. Phys. Rev. C 6, 1814 (1972).

https://doi.org/10.1103/PhysRevC.6.1814

Published

2022-12-21

How to Cite

Nesterov, V., Davydovska, O., & Denisov, V. (2022). Elastic Scattering Cross-Sections Obtained on the Basis of the Potential of the Modified Thomas–Fermi Method and Taking the Core into Account. Ukrainian Journal of Physics, 67(9), 645. https://doi.org/10.15407/ujpe67.9.645

Issue

Section

Fields and elementary particles