Morphology and Optical Properties of Tetragonal Ge Nanoclusters Grown on Chemically Oxidized Si(100) Surfaces

Authors

  • V.S. Lysenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • S.V. Kondratenko Taras Shevchenko National University of Kyiv
  • Yu.N. Kozyrev O.O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine
  • M.Yu. Rubezhanska O.O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine
  • V.P. Kladko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • Yu.V. Gomeniuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • O.Y. Gudymenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • Ye.Ye. Melnichuk Taras Shevchenko National University of Kyiv
  • G. Grenet Lyon Institute of Nanotechnologies (INL)
  • N.B. Blanchard Physics of Condensed Matter and Nanostructures Laboratory (LPMCN)

DOI:

https://doi.org/10.15407/ujpe57.11.1132

Keywords:

-

Abstract

Germanium (Ge) nanoclusters are grown by the molecular-beam epitaxy technique on a chemically oxidized Si(100) surface at 700 ºC. X-ray diffraction and photocurrent spectroscopy demonstrate that the nanoclusters have the local structure of body-centered-tetragonal Ge, which exhibits an optical adsorption
edge at 0.48 eV at 50 K. Deposition of silicon on the surface with Ge nanoclusters leads to the surface reconstruction and the formation of a polycrystalline diamond-like Si coverage, while the nanoclusters core becomes a tetragonal SiGe alloy. The intrinsic absorption edge is shifted to 0.73 eV due to the Si–Ge intermixing. Possible mechanisms for nanoclusters growth are discussed.

References

K. Brunner, Rep. Prog. Phys. 65, 27 (2002).

https://doi.org/10.1088/0034-4885/65/1/202

O.G. Schmidt and K. Eberl, Phys. Rev. B 61, 13721 (2000).

https://doi.org/10.1103/PhysRevB.61.13721

G. Masini, L. Colace, and G. Assanto, Mater. Sci. Eng. B 89, 2 (2002).

https://doi.org/10.1016/S0921-5107(01)00781-4

S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, IEEE Int. Electron Dev. Meet., 521 (1995).

J.H. Wu and P.W. Li, Semicond. Sci. Technol. 22, S89 (2007).

https://doi.org/10.1088/0268-1242/22/1/S21

A.A. Shklyaev and M. Ichikawa, Phys. Rev. B 65, 045307 (2001).

https://doi.org/10.1103/PhysRevB.65.045307

A.A. Shklyaev, M. Shibata, and M. Ichikawa, Phys. Rev. B 62, 1540 (2000).

https://doi.org/10.1103/PhysRevB.62.1540

L. Zhang, H. Ye, Y.R. Huangfu, C. Zhang, and X. Liu, Appl. Surf. Sci. 256, 768 (2009).

https://doi.org/10.1016/j.apsusc.2009.08.057

V.S. Lysenko, Yu.V. Gomeniuk, Yu.N. Kozyrev, M.Yu. Rubezhanska, V.K. Sklyar, S.V. Kondratenko, Ye.Ye. Melnichuk, and C. Teichert, Adv. Mater. Res. 276, 179 (2011).

https://doi.org/10.4028/www.scientific.net/AMR.276.179

Y. Nakamura, M. Ichikawa, K. Watanabe, and Y. Hatsugai, Appl. Phys. Lett. 90, 153104 (2007).

https://doi.org/10.1063/1.2720756

Y. Chen, Y.F. Lu, L.J. Tang, Y.H. Wu, B.J. Cho, X.J. Xu, J.R. Dong, and W.D. Song, J. Appl. Phys. 97, 014913 (2005).

https://doi.org/10.1063/1.1829789

J.-M. Baribeau, X. Wu, N.L. Rowell, and D.J. Lockwood, J. Phys. Condens. Matter 18, R139 (2006).

https://doi.org/10.1088/0953-8984/18/8/R01

E. Kasper, A. Schuh, G. Bauer, B. Holländer, and H. Kibbel, J. Cryst. Growth 157, 68 (1995).

https://doi.org/10.1016/0022-0248(95)00373-8

S.V. Kondratenko, O.V. Vakulenko, Yu.N. Kozyrev, M.Y. Rubezhanska, A.S. Nikolenko, and S.L. Golovinskiy, Nanotechn. 18, 185401 (2007).

https://doi.org/10.1088/0957-4484/18/18/185401

V.S. Lysenko, Yu.V. Gomeniuk, V.V. Strelchuk, A.S. Nikolenko, S.V. Kondratenko, Yu.N. Kozyrev, M.Yu. Rubezhanska, and C. Teichert, Phys. Rev. B 84, 115425 (2011).

https://doi.org/10.1103/PhysRevB.84.115425

W. Skorupa, L. Rebohle, and T. Gebel, Appl. Phys. A 76, 1049 (2003).

https://doi.org/10.1007/s00339-002-1947-x

A.A. Shklyaev and M. Ichikawa, Phys. Uspekhi 51 133 (2008).

https://doi.org/10.1070/PU2008v051n02ABEH006344

A. Barski, M. Derivaz, J.L. Rouvière, and D. Buttard, Appl. Phys. Lett. 77, 3541 (2000).

https://doi.org/10.1063/1.1328771

A.A. Shklyaev, M. Shibata, and M. Ichikawa, Phys. Rev. B 62, 1540 (2000).

https://doi.org/10.1103/PhysRevB.62.1540

Darin Leonhardt, Swapnadip Ghosh, and Sang M. Han, J. Appl. Phys. 110, 073516 (2011).

https://doi.org/10.1063/1.3643003

B.D. Malone, S.G. Louie, and M.L. Cohen, Phys. Rev. B 81, 115201 (2010).

https://doi.org/10.1103/PhysRevB.81.115201

Y. Fujimoto, T. Koretsune, S. Saito, Y. Miyake, and A. Oshiyama, New J. Phys. 10, 083001 (2008).

https://doi.org/10.1088/1367-2630/10/8/083001

Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, Appl. Phys. Lett. 61, 2187 (1992).

https://doi.org/10.1063/1.108290

Y. Saito, J. Cryst. Growth 47, 61 (1979).

https://doi.org/10.1016/0022-0248(79)90157-X

J. Jiang, K. Chen, X. Huang, Z. Li, and D. Feng, Appl. Phys.

Lett. 65, 1799 (1994).

https://doi.org/10.2307/1131295

J.C. Jamieson, Science 139, 762 (1963).

https://doi.org/10.1126/science.139.3556.762

A.A. Shklyaev and M. Ichikawa, Appl. Phys. Lett. 80, 1432 (2002).

https://doi.org/10.1063/1.1451986

N.A. Drozdov, A.A. Patrin, and V.D. Tkachev, JETP Lett. 23, 597 (1976).

Published

2021-12-03

How to Cite

Lysenko В., Kondratenko С., Kozyrev Ю., Rubezhanska М., Kladko В., Gomeniuk Ю., Gudymenko О., Melnichuk Є., Grenet Ж., & Blanchard Н. (2021). Morphology and Optical Properties of Tetragonal Ge Nanoclusters Grown on Chemically Oxidized Si(100) Surfaces. Ukrainian Journal of Physics, 57(11), 1132. https://doi.org/10.15407/ujpe57.11.1132

Issue

Section

Optics, lasers, and quantum electronics