Effect of Interface Defect States on Photoelectric Properties of InxGa1-xAs/GaAs Heterostructures with Quantum Dots

Authors

  • O.V. Vakulenko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • S.L. Golovynskyi Taras Shevchenko National University of Kyiv, Faculty of Physics
  • S.V. Kondratenko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • Yu.I. Mazur Arkansas Institute of Nanoscale Materials Science and Engineering, University of Arkansas
  • Zh.M. Wang Arkansas Institute of Nanoscale Materials Science and Engineering, University of Arkansas
  • G.J. Salamo Arkansas Institute of Nanoscale Materials Science and Engineering, University of Arkansas

DOI:

https://doi.org/10.15407/ujpe56.9.940

Keywords:

-

Abstract

Properties of the lateral photocurrent in InxGa1–xAs/GaAs heterostructures with quantum dot (QD) chains at various indium
concentrations x are investigated. At the interband excitation of QDs by quanta with h\ν = 1.2 eV, the structures have revealed a long-term rise and the relaxation kinetics of the photocurrent as well as the effect of residual conductivity after the exciting radiation
is turned off. Analyzing the data on thermostimulated conduction (TSC) after the excitation by optical radiation in the region of QD
absorption, the following energy levels of defect states with respect to the GaAs conduction band were found: 0.11 eV, 0.16 eV, 0.21 eV, 0.24 eV, and 0.35 eV. Investigations of the lateral photoconduction (LPC) made it possible to discover transitions involving the levels of electron traps of EL2 and EB3 GaAs intrinsic defects. In the simplest case of a nanostructured photoconductor with one trapping center, we obtained an analytical expression for the photocurrent kinetics of conduction electrons that was confirmed by
experiments with In0,4Ga0,6As/GaAs samples. The kinetics of In0,5Ga0,5As/GaAs photoconductors is more complex and described only qualitatively.

References

M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).

https://doi.org/10.1103/PhysRevB.52.11969

E.B. Foxman, P.L. McEuen, U. Meirav, N.S. Wingreen, Y. Meir, P.A. Belk, N.R. Belk, M.A. Kastner, and S.J. Wind, Phys. Rev. B 47, 10020 (1993).

https://doi.org/10.1103/PhysRevB.47.10020

Y. Meir, N.S. Wingreen, and P.A. Lee, Phys. Rev. Lett. 66, 3048 (1991).

https://doi.org/10.1103/PhysRevLett.66.3048

V.S. Vavilov, P.C. Euthymiou, and G.E. Zardas, Usp. Fiz. Nauk 169, 209 (1999).

https://doi.org/10.3367/UFNr.0169.199902e.0209

Ì.K. Sheinkman and A.Ya. Shik, Fiz. Tekhn. Polupr. 10, 209 (1976).

L.I. Grossweiner, J. Appl. Phys. 24, 1306 (1953).

https://doi.org/10.1063/1.1721152

D.S. Misra, A. Kumar, and S.C. Agarwal, Phys. Rev. B 31, 1047 (1985).

https://doi.org/10.1103/PhysRevB.31.1047

A.G. Milnes, Deep Impurities in Semiconductors (Wiley-Interscience, New York, 1973).

O.V. Vakulenko, S D. Kondratenko, S.L. Golovinskii, and I.A. Grin', Visn. Kyiv. Univers. Ser. Fiz. Mat. Nauk. 2, 247 (2010).

T. Asano, Z. Fang, and A. Madhukar, J. Appl. Phys. 107, 073111 (2010).

https://doi.org/10.1063/1.3359704

S.W. Lin, C. Balocco, M. Missous, A.R. Peaker, and A.M. Song, Phys. Rev. B 72, 165302 (2005).

J.S. Kim, E.K. Kim, W.J. Choi, J.D. Song, and J.I. Lee, Jpn. J. Appl. Phys. 45, 5575 (2006).

https://doi.org/10.1143/JJAP.45.5575

G.M. Martin, A. Mitonneau, and A. Mircea, Electron. Lett. 13, 191 (1977).

https://doi.org/10.1049/el:19770140

P. Bräunlich, Appl. Phys. Lett. 38, 2516 (1967).

https://doi.org/10.1063/1.1709939

M. Shafi, R.H. Mari, A. Khatab, D. Taylor, and M. Henini, Nanoscale Res. Lett. 5, 1948 (2010).

https://doi.org/10.1007/s11671-010-9820-x

D.P. Popescu, P.G. Eliseev, A. Stintz, and K.J. Malloy, Semicond. Sci. Technol. 19, 33 (2004).

https://doi.org/10.1088/0268-1242/19/1/005

W.-H. Chang, T.M. Hsu, C.C. Huang, S.L. Hsu, C.Y. Lai, N.T. Yeh, T.E. Nee, and J.-I. Chyi, Phys. Rev. B 62, 6959 (2000).

https://doi.org/10.1103/PhysRevB.62.6959

J.L. Casas Espinola, M. Dybic, S. Ostapenco, T.V. Torchynska, and G. Polupan, J. Phys. Conf. Series 61, 180 (2006).

https://doi.org/10.1088/1742-6596/61/1/036

J. Bloch, J. Shah, L.N. Pfeiffer, K.W. West, and S.N.G. Chu, Appl. Phys. Lett. 77, 2545 (2000).

https://doi.org/10.1063/1.1289493

K. Mukai, N. Ohtsuka, and M. Sugawara, Appl. Phys. Lett. 70, 2416 (1997).

https://doi.org/10.1063/1.118889

Y.T. Dai, J.C. Fan, Y.F. Chen, R.M. Lin, S.C. Lee, and H.H. Lin, J. Appl. Phys. 82, 4489 (1997).

https://doi.org/10.1063/1.366255

O.V. Vakulenko and M.P. Lisitsa, Optical Recharging Recharge of Impurity in Semiconductors (Naukova Dumka, Kiev, 1992) (in Russian).

V.I. Borisov, V.A. Sablikov, I.V. Borisova, and A.I. Chmil', Fiz. Tekhn. Polupr. 33, 68 (1999).

https://doi.org/10.1134/1.1187648

M.V. Fock, Introduction into Kinetics of Crystal Luminescence (Nauka, Moscow, 1964) (in Russian).

https://doi.org/10.1016/B978-0-08-010061-6.50007-X

Ì.Ì. Sobolev, I.V. Kochnev, V.M. Lantratov, N.A. Bert, N.A. Cherkashin, N.N. Ledentsov, and D.A. Bedarev, Fiz. Tekhn. Polupr. 34, 200 (2000).

https://doi.org/10.1134/1.1187932

R.H. Bube, Photoconductivity of Solids (Wiley, New York, 1960).

Published

2022-02-08

How to Cite

Vakulenko О., Golovynskyi С., Kondratenko С., Mazur Ю., Wang Ж., & Salamo Г. (2022). Effect of Interface Defect States on Photoelectric Properties of InxGa1-xAs/GaAs Heterostructures with Quantum Dots. Ukrainian Journal of Physics, 56(9), 940. https://doi.org/10.15407/ujpe56.9.940

Issue

Section

Nanosystems