Influence of Charge Carrier Thermal Activation on the Temperature Dependences of Dark Current, Photoconductivity, and Photoluminescence in In0.4Ga0.6As/GaAs Heterostructures with Quantum Dots

Authors

  • O.V. Vakulenko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • S.L. Golovynskyi Taras Shevchenko National University of Kyiv, Faculty of Physics
  • S.V. Kondratenko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • I.A. Gryn Taras Shevchenko National University of Kyiv, Faculty of Physics
  • V.V. Strelchuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.4.381

Keywords:

-

Abstract

The In0.4Ga0.6As/GaAs heterostructure with quantum-dot chains has been studied. Dark current measurements reveal the anisotropy of electrical properties of the structure in the temperature range 77–150 K. The wave-function damping length and the average hopping distance in the heterostructure are calculated. The energy diagram of the heterosystem is analyzed by using the lateral photocurrent and photoluminescence spectroscopies. The activation energies of electrons and heavy holes were determined from experimental data in the framework of a theoretical model proposed for the temperature dependence of the lateral photocurrent.

References

D. Bimberg, M. Grudmann, and N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1999).

T. Lundstrom, W. Schoenfeld, H. Lee, and P.M. Petroff, Science 286, 2312 (1999).

https://doi.org/10.1126/science.286.5448.2312

H. Drexler, D. Leonard, W. Hansen, J.P. Kotthaus, and P.M. Petroff, Phys. Rev. Lett. 73, 2252 (1994).

https://doi.org/10.1103/PhysRevLett.73.2252

L.I. Glazman and R.C. Ashoori, Science 304, 524 (2004).

https://doi.org/10.1126/science.1097442

Q.D. Zhuang, J.M. Li, Y.P. Zeng, L. Pan, Y.H. Chen, M.Y. Kong, and L.Y. Lin, J. Electron. Mater. 28, 503 (1999).

https://doi.org/10.1007/s11664-999-0102-2

M.L. Hussein, W.Q. Ma, and G.J. Salamo, Mat. Res. Soc. Symp. Proc. 776, Q. 11.29.1-11.29.4 (1999).

O. Rubel, P. Dawson, S.D. Baranovskii, K. Pierz, P. Thomas, and E.O. Gobel, Phys. Status Solidi C 3, 2397 (2006).

https://doi.org/10.1002/pssc.200668100

Yu.I. Mazur, Zh.M. Wang, H. Kissel, Z.Ya. Zhuchenko, M.P. Lisitsa, G.G. Tarasov, and G.J. Salamo, Semicond. Sci. Technol. 22, 86 (2007).

https://doi.org/10.1088/0268-1242/22/2/015

V.V. Strelchuk, Yu.I. Mazur, Zh.M. Wang, M. Schmidbauer, O.F. Kolomys, M.Ya. Valakh, M.O. Manasreh, and G.J. Salamo, J. Mater. Electr. 19, 692 (2008).

https://doi.org/10.1007/s10854-007-9381-7

H.C. Li, J.-Y. Duboz, R. Durek, Z.R. Wasilewski, S. Fafard, and P. Finnie, Physica E 17, 631 (2003).

https://doi.org/10.1016/S1386-9477(02)00913-X

S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, Appl. Phys. Lett. 73, 963 (1998).

https://doi.org/10.1063/1.122053

S.-Y. Lin, Y.-J. Tsai, and S.-C. Lee, Appl. Phys. Lett. 78, 2428 (2001).

https://doi.org/10.1063/1.1362201

A. Luque and A. Marti, Prog. Photovolt.: Res. Appl. 9, 73 (2001).

https://doi.org/10.1002/pip.354

A. Marti, E. Antolin, C.R. Stanley, C.D. Farmen, N. Lopez, P. Diaz, E. Canovas, R.G. Linares, and A. Luque, Phys. Rev. Lett. 97, 247701 (2006).

I. Chu, A. Zrenner, G. B¨orn, and G. Abstreiter, Appl. Phys. Lett. 76, 1944 (2000).

https://doi.org/10.1063/1.126220

J.R. Botha and A.W.R. Leitch, Phys. Rev. B 50, 18147 (1994).

https://doi.org/10.1103/PhysRevB.50.18147

A.I. Yakimov, A.V. Dvurechenskii, A.V. Nenashev, and A.I. Nikiforov, Phys. Rev. B 68, 205310 (2003).

https://doi.org/10.1103/PhysRevB.68.205310

A.F.G. Monte, F.V. Sales, and P.C. Morais, J. Phys.: Condens. Matter 21, 1 (2009).

https://doi.org/10.1088/0953-8984/21/2/025302

V.A. Romaka, D. Fruchart, L.P. Romaka, A.M. Horyn, O.V. Bovgyra, and R.V. Krayovskyy, Ukr. Fiz. Zh. 54, 1190 (2009).

L. Aleiner and B.I. Shkolovskii, Phys. Rev. B 49, 13721 (1994).

https://doi.org/10.1103/PhysRevB.49.13721

N.P. Stepina, E.S. Koptev, A.V. Dvurechenskii, and A.I. Nikiforov, Phys. Rev. B 80, 125308 (2009).

https://doi.org/10.1103/PhysRevB.80.125308

D.P. Popescu, P.G. Eliseev, A. Stintz, and K.J. Malloy, Semicond. Sci. Technol 19, 33 (2004).

https://doi.org/10.1088/0268-1242/19/1/005

W.-H. Chang, T.M. Hsu, C.C. Huang, S.L. Hsu, C.Y. Lai, N.T. Yeh, T.E. Nee, and J.-I. Chyi, Phys. Rev. B 62, 6959 (2000). https://doi.org/10.1103/PhysRevB.62.6959

J.L. Casas Espinola, M. Dybic, S. Ostapenco, T.V. Torchynska, and G. Polupan, J. Phys.: Conf. Ser. 61, 180 (2006). https://doi.org/10.1088/1742-6596/61/1/036

S. Sanguinetti, T. Mano, M. Oshima, T. Tateno, M. Wakaki, and N. Koguchi, Appl. Phys. Lett. 81, 3067 (2002). https://doi.org/10.1063/1.1516632

Published

2022-02-14

How to Cite

Vakulenko О., Golovynskyi С., Kondratenko С., Gryn І., & Strelchuk В. (2022). Influence of Charge Carrier Thermal Activation on the Temperature Dependences of Dark Current, Photoconductivity, and Photoluminescence in In0.4Ga0.6As/GaAs Heterostructures with Quantum Dots. Ukrainian Journal of Physics, 56(4), 381. https://doi.org/10.15407/ujpe56.4.381

Issue

Section

Nanosystems

Most read articles by the same author(s)