Peculiarities of Bacterial Chemotaxis in a Cylindrical Pore

Authors

  • A. N. Vasilev Taras Shevchenko National University of Kyiv, Faculty of Physics, Chair of Theoretical Physics
  • B. Y. Serhushev Taras Shevchenko National University of Kyiv, Faculty of Physics, Chair of Theoretical Physics

DOI:

https://doi.org/10.15407/ujpe64.2.137

Keywords:

chemotaxis, attractant, bacterium, diffusion, cylindrical pore

Abstract

The process of bacterial redistribution in a cylindrical pore filled with an attractant has been considered. The attractant concentration decreases linearly along the pore, and the redistribution of bacteria occurs due to their diffusion (the motion of bacteria along the gradient of their concentration) and chemotaxis (the motion of bacteria along the gradient of attractant concentration). The influence of a spatial confinement on the bacterial distribution in the pore is analyzed. It is shown that if the pore wall is “repelling” for bacteria, the spatial confinement can change the bacterial distribution. In particular, as the pore radius decreases, the chemotaxic effect becomes weaker. The non-uniformity of a bacterial distribution in the system is estimated. The chemotaxis sensitivity function (the deviation of the ratio between the local average bacterial concentration and the average bacterial concentration over the whole system from unity) is calculated, and its dependence on the attractant concentration at the system ends and on the pore size is determined.

References

J.D. Murray. Mathematical Biology: I. An Introduction (Springer, 2007).

J. Adler. Chemotaxis in bacteria. Science 153, 708 (1966). https://doi.org/10.1126/science.153.3737.708

R.M. Macnab, D.E. Koshland. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 69, 2509 (1972). https://doi.org/10.1073/pnas.69.9.2509

H.C. Berg, D.A. Brown. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500 (1972). https://doi.org/10.1038/239500a0

T. Namba, M. Nishikawa, T. Shibata. The relation of signal transduction to the sensitivity and dynamic range of bacterial chemotaxis. Biophys. J. 103, 1390 (2012). https://doi.org/10.1016/j.bpj.2012.08.034

G.R. Ivanitskii, A.B. Medvinskii, M.A. Tsyganov. From disorder to ordering – on the example of the microorganism motion. Usp. Fiz. Nauk 161, No. 4, 13 (1991) (in Russian). https://doi.org/10.3367/UFNr.0161.199104b.0013

G.R. Ivanitskii, A.B. Medvinskii, M.A. Tsyganov. From the dynamics of population autowaves formed by living cells to neuroinformatics. Usp. Fiz. Nauk 164, No. 10, 1041 (1994) (in Russian). https://doi.org/10.3367/UFNr.0164.199410b.1041

J. Zhuang, G. Wei, R.W. Carlsen, M.R. Edwards, R. Marculescu, P. Bogdan, M. Sitti. Analytical modeling and experimental characterization of chemotaxis in Serratia marcescens. Phys. Rev. E 89, 052704 (2014). https://doi.org/10.1103/PhysRevE.89.052704

T. Sagawa, Y. Kikuchi, Y. Inoue, H. Takahashi, T. Muraoka, K. Kinbara, A. Ishijima, H. Fukuoka. Single-cell E. coli response to an instantaneously applied chemotactic signal. Biophys. J. 10, 730 (2014). https://doi.org/10.1016/j.bpj.2014.06.017

M.J. Tindall, S.K. Porter, P.K. Maini, G. Gaglia, J.P. Armitage. Overview of mathematical approaches used to model bacterial chemotaxis. II: Bacterial populations. Bull. Math. Biol. 70, 1570 (2008). https://doi.org/10.1007/s11538-008-9322-5

E.F. Keller, L.A. Segel. Travelling bands of chemotactic bacteria: A theoretical analysis. J. Theor. Biol. 30, 235 (1971). https://doi.org/10.1016/0022-5193(71)90051-8

E. Keller, L. Segel. Model for chemotaxis. J. Theor. Biol. 30, 225 (1971). https://doi.org/10.1016/0022-5193(71)90050-6

E. Keller, L. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399 (1970). https://doi.org/10.1016/0022-5193(70)90092-5

R.M. Ford, R.W. Harvey. Role of chemotaxis in the transport of bacteria through saturated porous media. Adv. Water Resour. 30, 1608 (2007). https://doi.org/10.1016/j.advwatres.2006.05.019

M. Stone Olson, R.M. Ford, J.A. Smith, E.J. Fernandez. Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging. Environ. Sci. Technol. 38, 3864 (2004). https://doi.org/10.1021/es035236s

M.L. Porter, F.J. Vald?es-Parada, B.D. Wood. Multiscale modeling of chemotaxis in homogeneous porous media. Water Resour. Res. 47, W06518 (2011). https://doi.org/10.1029/2010WR009646

F.J. Vald?es-Parada, M.L. Porter, K. Narayanaswamy, R.M. Ford, B.D. Wood. Upscaling microbial chemotaxis in porous media. Adv. Water Resour. 32, 1413 (2009).

O.M. Vasilev, D.E. Sakovich. Simulation of bacterial chemotaxis in a one-dimensional system. Zh. Fiz. Dosl. 19, 1801 (2015) (in Ukrainian). D.V. Bogdanov, O.M. Vasilev. Chemotaxis sensitivity function for a two-dimensional system with radial symmetry. Zh. Fiz. Dosl. 21, 3801 (2017) (in Ukrainian).

A.N. Vasilev. Analytical approach for calculating the chemotaxis sensitivity function. Ukr. J. Phys. 63, 255 (2018). https://doi.org/10.15407/ujpe63.3.255

Published

2019-02-21

How to Cite

Vasilev, A. N., & Serhushev, B. Y. (2019). Peculiarities of Bacterial Chemotaxis in a Cylindrical Pore. Ukrainian Journal of Physics, 64(2), 137. https://doi.org/10.15407/ujpe64.2.137

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics