Surface Plasmon Resonance in “Monolayer of Ni Nanoparticles/Dielectric Spacer/Au (Ni) Film” Nanostructure

Tuning by Variation of Spacer Thickness

Authors

  • O. A. Yeshchenko Taras Shevchenko National University of Kyiv, Physics Department
  • V. V. Kozachenko Taras Shevchenko National University of Kyiv, Physics Department
  • A. V. Tomchuk Taras Shevchenko National University of Kyiv, Physics Department

DOI:

https://doi.org/10.15407/ujpe63.5.386

Abstract

The dual surface plasmon resonance in Ni nanoparticles in “monolayer of Ni nanoparticles/shellac film/Au (Ni) film” planar nanostructures has been observed in UV-vis absorption spectra. The dependences of the intensity, wavelength, and width of the dual SPR absorption peaks of Ni nanoparticles coupled with an Au (Ni) film on the spacer thickness have been studied in the range of spacer thicknesses of 12–43 nm. The main features of these dependences are an increase of the intensity, the blue shift, and the monotonic behavior of the widths of SPR absorption peaks at a decrease of the spacer thickness. The observed dependences have been rationalized as a result of the plasmonic coupling of the monolayer of Ni nanoparticles with
the metal film and the variation of the dielectric permittivity of the environment of Ni nanoparticles caused by the metal film presence. The stronger dependences of the SPR spectral characteristics of Ni nanoparticles have been observed in the nanostructure containing the gold film comparing to that with a nickel one. Such effect is due to the stronger coupling of Ni nanoparticles with an Au film, and the stronger influence of an Au film on the permittivity of the environment of Ni nanoparticles.

References

<ol>
<li>E. Ozbay. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189 (2006).
<a href="https://doi.org/10.1126/science.1114849">https://doi.org/10.1126/science.1114849</a>
</li>
<li>W.L. Barnes, A. Dereux, T.W. Ebbesen. Surface plasmon subwavelength optics. Nature 424, 824 (2003).
<a href="https://doi.org/10.1038/nature01937">https://doi.org/10.1038/nature01937</a>
</li>
<li>M. I. Stockman. Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029 (2011).
<a href="https://doi.org/10.1364/OE.19.022029">https://doi.org/10.1364/OE.19.022029</a>
</li>
<li>P. Bermel, M. Ghebrebrhan, W. Chan, Y.X. Yeng, M. Araghchini, R. Hamam, C.H. Marton, K.F. Jensen, M. Soljaci?c, J.D. Joannopoulos, S.G. Johnson, I. Celanovic. Design and global optimization of high-efficiency thermophotovoltaic systems. Opt. Express 18, A314 (2010).
<a href="https://doi.org/10.1364/OE.18.00A314">https://doi.org/10.1364/OE.18.00A314</a>
</li>
<li>J. Hao, J. Wang, X. Liu, W.J. Padilla, L. Zhou, M. Qiu. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251104 (2010).
<a href="https://doi.org/10.1063/1.3442904">https://doi.org/10.1063/1.3442904</a>
</li>
<li>F. Niesler, J. Gansel, S. Fischbach, M. Wegener. Metamaterial metal-based bolometers. Appl. Phys. Lett. 100, 203508 (2012).
<a href="https://doi.org/10.1063/1.4714741">https://doi.org/10.1063/1.4714741</a>
</li>
<li>L. Baldassarre, V. Giliberti, A. Rosa, M. Ortolani, A. Bonamore, P. Baiocco, K. Kjoller, P. Calvani, A. Nucara. Mapping the amide I absorption in single bacteria and mammalian cells with resonant infrared nanospectroscopy. Nanotechnology 27, 075101 (2016).
<a href="https://doi.org/10.1088/0957-4484/27/7/075101">https://doi.org/10.1088/0957-4484/27/7/075101</a>
</li>
<li>N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).
<a href="https://doi.org/10.1103/PhysRevLett.100.207402">https://doi.org/10.1103/PhysRevLett.100.207402</a>
</li>
<li>Y. Avitzour, Y.A. Urzhumov, G. Shvets. Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Phys. Rev. B 79, 045131 (2009).
<a href="https://doi.org/10.1103/PhysRevB.79.045131">https://doi.org/10.1103/PhysRevB.79.045131</a>
</li>
<li> N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342 (2010).
<a href="https://doi.org/10.1021/nl9041033">https://doi.org/10.1021/nl9041033</a>
</li>
<li> C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, R. Haпdar. Total routing and absorption of photons in dual color plasmonic antennas. Appl. Phys. Lett. 99, 241104 (2011).
<a href="https://doi.org/10.1063/1.3670051">https://doi.org/10.1063/1.3670051</a>
</li>
<li> C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy. Large-area wide-angle spectrally selective plasmonic absorber. Phys. Rev. B 84, 075102 (2011).
<a href="https://doi.org/10.1103/PhysRevB.84.075102">https://doi.org/10.1103/PhysRevB.84.075102</a>
</li>
<li> A. Tittl, P. Mai, R. Taubert, D. Dregely, N.L.H. Giessen. Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano Lett. 11, 4366 (2011).
<a href="https://doi.org/10.1021/nl202489g">https://doi.org/10.1021/nl202489g</a>
</li>
<li> E. Prodan, C. Radloff, N. J. Halas, P. Nordlander. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419 (2003).
<a href="https://doi.org/10.1126/science.1089171">https://doi.org/10.1126/science.1089171</a>
</li>
<li> O.A. Yeshchenko, I. Bondarchuk, S. Malynych, Yu. Galabura, G. Chumanov, I. Luzinov. Surface plasmon modes of sandwich-like metal–dielectric nanostructures. Plasmonics 10, 655 (2015).
<a href="https://doi.org/10.1007/s11468-014-9851-8">https://doi.org/10.1007/s11468-014-9851-8</a>
</li>
<li> V.V. Kravets, O.A. Yeshchenko, V.V. Gozhenko, L.E. Ocola, D.A. Smith, J.V. Vedral, A.O. Pinchuk. Electrodynamic coupling in regular arrays of gold nanocylinders. J. Phys. D 45, 045102 (2012).
<a href="https://doi.org/10.1088/0022-3727/45/4/045102">https://doi.org/10.1088/0022-3727/45/4/045102</a>
</li>
<li> M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A.P. Alivisatos, N. Liu. Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 10, 2721 (2010).
<a href="https://doi.org/10.1021/nl101938p">https://doi.org/10.1021/nl101938p</a>
</li>
<li> M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. K?urzinger, T.A. Klar, J. Feldmann. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 100, 203002 (2008).
<a href="https://doi.org/10.1103/PhysRevLett.100.203002">https://doi.org/10.1103/PhysRevLett.100.203002</a>
</li>
<li> A. Moreau, C. Cirac`?, J.J. Mock, R.T. Hill, Q. Wang, B.J. Wiley, A. Chilkoti, D.R. Smith. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492, 86 (2012).
<a href="https://doi.org/10.1038/nature11615">https://doi.org/10.1038/nature11615</a>
</li>
<li> J.J. Mock, R.T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, D.R. Smith. Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett. 8, 2245 (2008).
<a href="https://doi.org/10.1021/nl080872f">https://doi.org/10.1021/nl080872f</a>
</li>
<li> C. Cirac`?, R.T. Hill, J.J. Mock, Y. Urzhumov, A.I. Fern’andez-Dom’?nguez, S.A. Maier, J.B. Pendry, A. Chilkoti, D.R. Smith. Probing the ultimate limits of plasmonic enhancement. Science 337, 1072 (2012).
<a href="https://doi.org/10.1126/science.1224823">https://doi.org/10.1126/science.1224823</a>
</li>
<li> A. Sobhani, A. Manjavacas, Y. Cao, M.J. McClain, F.J. Garc’?a de Abajo, P. Nordlander, N. J. Halas. Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film. Nano Lett. 15, 6946 (2015).
<a href="https://doi.org/10.1021/acs.nanolett.5b02883">https://doi.org/10.1021/acs.nanolett.5b02883</a>
</li>
<li> O.A. Yeshchenko, V.V. Kozachenko, Yu.F. Liakhov, A.V. Tomchuk, M. Haftel, A.O. Pinchuk. Gold nanoparticle plasmon resonance in near-field coupled Au NPs layer/Al film nanostructure: dependence on metal film thickness. Mater. Res. Express 4, 106401 (2017).
<a href="https://doi.org/10.1088/2053-1591/aa8c3a">https://doi.org/10.1088/2053-1591/aa8c3a</a>
</li>
<li> A. Pinchuk, A. Hilger, G. von Plessen, U. Kreibig. Substrate effect on the optical response of silver nanoparticles. Nanotechnology 15 1890 (2004).
<a href="https://doi.org/10.1088/0957-4484/15/12/036">https://doi.org/10.1088/0957-4484/15/12/036</a>
</li>
<li> N. Papanikolaou. Optical properties of metallic nanoparticle arrays on a thin metallic film. Phys. Rev. B 75, 235426 (2007).
<a href="https://doi.org/10.1103/PhysRevB.75.235426">https://doi.org/10.1103/PhysRevB.75.235426</a>
</li>
<li> P. Nordlander, F. Le. Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system. Appl. Phys. B 84, 35 (2006).
<a href="https://doi.org/10.1007/s00340-006-2203-4">https://doi.org/10.1007/s00340-006-2203-4</a>
</li>
<li> F. Le, N.Z. Lwin, J.M. Steele, M. Kall, N.J. Halas, P. Nordlander. Plasmons in the metallic nanoparticle-film system as a tunable impurity problem. Nano Lett. 5, 2009 (2005).
<a href="https://doi.org/10.1021/nl0515100">https://doi.org/10.1021/nl0515100</a>
</li>
<li> N. Nedyalkov, T. Sakai, T. Miyanishi, M. Obara. Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate. Appl. Phys. Lett. 90, 123106 (2007).
<a href="https://doi.org/10.1063/1.2715103">https://doi.org/10.1063/1.2715103</a>
</li>
<li> G. Leveque, O.J.F. Martin. Optical interactions in a plasmonic particle coupled to a metallic film. Opt. Express 14, 9971 (2006).
<a href="https://doi.org/10.1364/OE.14.009971">https://doi.org/10.1364/OE.14.009971</a>
</li>
<li> S.K. Eah, H.M. Jaeger, N.F. Scherer, G.P. Wiederrecht, X.M. Lin. Scattered light interference from a single metal nanoparticle and its mirror image. J. Phys. Chem. B 109, 11858 (2005).
<a href="https://doi.org/10.1021/jp0511395">https://doi.org/10.1021/jp0511395</a>
</li>
<li> W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, H. Cao. Time-reversed lasing and interferometric control of absorption. Science 331, 889 (2011).
<a href="https://doi.org/10.1126/science.1200735">https://doi.org/10.1126/science.1200735</a>
</li>
<li> O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, A.M. Dmytruk. Optical properties of sol–gel fabricated Ni/SiO2 glass nanocomposites. J. Phys. Chem. Solids 69, 1615 (2008).
<a href="https://doi.org/10.1016/j.jpcs.2007.12.002">https://doi.org/10.1016/j.jpcs.2007.12.002</a>
</li>
<li> S. Roy, D. Das, C. Chakravorty, D.C. Agrawal. Magnetic properties of glass–metal nanocomposites prepared by the sol–gel route and hot pressing. J. Appl. Phys. 74, 4746 (1993).
<a href="https://doi.org/10.1063/1.354344">https://doi.org/10.1063/1.354344</a>
</li>
<li> L. N’arvaez, O. Dom’?nguez, J.R. Mart’?nez, F. Ruiz. Preparation of (Ni-B)/SiO2, Ni/SiO2 and NiO/SiO2 nanocomposites. J. Non-Cryst. Solids 318, 37 (2003).
<a href="https://doi.org/10.1016/S0022-3093(02)01877-X">https://doi.org/10.1016/S0022-3093(02)01877-X</a>
</li>
<li> M.A. Ermakova, D.Yu. Ermakov, S.V. Cherepanova, L.M. Plyasova. Synthesis of ultradispersed nickel particles by reduction of high-loaded NiO–SiO2 systems prepared by heterophase sol-gel method. J. Phys. Chem. B 106, 11922 (2002).
<a href="https://doi.org/10.1021/jp021231q">https://doi.org/10.1021/jp021231q</a>
</li>
<li> K. Takeuchi, T. Isobe, M. Senna. Effects of mechanical pretreatment of precursor sols and gels on the formation of NiO/SiO2 composites with a controlled microstructure. J. Non-Cryst. Solids 194, 58 (1996).
<a href="https://doi.org/10.1016/0022-3093(95)00461-0">https://doi.org/10.1016/0022-3093(95)00461-0</a>
</li>
<li> J. Hern’andez-Torres, A. Mendoza-Galv’an. Optical properties of sol-gel SiO2films containing Nickel. Thin Solid Films 472, 130 (2005).
<a href="https://doi.org/10.1016/j.tsf.2004.06.132">https://doi.org/10.1016/j.tsf.2004.06.132</a>
</li>
<li> N. Cordente, M. Respaud, F. Senocq, M.-J. Casanove, C. Amiens, B. Chaudret. Synthesis and Magnetic Properties of Nickel Nanorods. Nano Lett. 1, 565 (2001).
<a href="https://doi.org/10.1021/nl0100522">https://doi.org/10.1021/nl0100522</a>
</li>
<li> C. Estournes, T. Lutz, T. Happich, T. Quaranta, P. Wissler, J.L. Guille. Nickel nanoparticles in silica gel: Preparation and magnetic properties. J. Magn. Magn. Mater. 173, 83 (1997).
<a href="https://doi.org/10.1016/S0304-8853(97)00144-3">https://doi.org/10.1016/S0304-8853(97)00144-3</a>
</li>
<li> J. Jiao, S. Seraphin, X. Wang, J.C. Withers. Preparation and properties of ferromagnetic carboncoated Fe, Co, and Ni nanoparticles. J. Appl. Phys. 80, 103 (1996).
<a href="https://doi.org/10.1063/1.362765">https://doi.org/10.1063/1.362765</a>
</li>
<li> F.C. Fonseca, G.F. Goya, R.F. Jardim, R. Muccillo, N.L.V. Carre?no, E. Longo, E.R. Leite. Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO2. Phys. Rev. B 66, 104406 (2002).
<a href="https://doi.org/10.1103/PhysRevB.66.104406">https://doi.org/10.1103/PhysRevB.66.104406</a>
</li>
<li> B.G. Ershov. Aqueous solutions of colloidal nickel: Radiation-chemical preparation, absorption spectra, and properties. Russian Chemical Bulletin 49, 1715 (2000).
<a href="https://doi.org/10.1007/BF02496340">https://doi.org/10.1007/BF02496340</a>
</li>
<li> H. Amekura, Y. Takeda, H. Kitazawa, N. Kishimoto. Modification of metal nanoparticles in SiO2 by thermal oxidation. SPIE Proc. 4977, 639 (2003).
</li>
<li> T. Isobe, S.Y. Park, R.A. Weeks, R.A. Zhur. The optical and magnetic properties of Ni+-implanted silica. J. Non-Cryst. Solids 189, 173 (1995).
<a href="https://doi.org/10.1016/0022-3093(95)00230-8">https://doi.org/10.1016/0022-3093(95)00230-8</a>
</li>
<li> O. C’?ntora-Gonz’alez, C. Estourn`es, D. Muller, J. Guille, J.J. Grob.Magnetic behavior of Ni+ implanted silica. Nucl. Instr. Meth. B 147, 422 (1999).
<a href="https://doi.org/10.1016/S0168-583X(98)00579-5">https://doi.org/10.1016/S0168-583X(98)00579-5</a>
</li>
<li> H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, S. Mantl. Dual surface plasmon resonances in Zn nanoparticles in SiO2: An experimental study based on optical absorption and thermal stability. Nanotechnology 18, 395707 (2007).
<a href="https://doi.org/10.1088/0957-4484/18/39/395707">https://doi.org/10.1088/0957-4484/18/39/395707</a>
</li>
<li> P.B. Johnson, R.W. Christy. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B 9, 5056 (1974).
<a href="https://doi.org/10.1103/PhysRevB.9.5056">https://doi.org/10.1103/PhysRevB.9.5056</a></li>

Downloads

Published

2018-07-03

How to Cite

Yeshchenko, O. A., Kozachenko, V. V., & Tomchuk, A. V. (2018). Surface Plasmon Resonance in “Monolayer of Ni Nanoparticles/Dielectric Spacer/Au (Ni) Film” Nanostructure: Tuning by Variation of Spacer Thickness. Ukrainian Journal of Physics, 63(5), 386. https://doi.org/10.15407/ujpe63.5.386

Issue

Section

Surface physics