Temperature Effects on the Surface Plasmon Resonance in Copper Nanoparticles
DOI:
https://doi.org/10.15407/ujpe58.03.0249Keywords:
surface plasmon resonance, copper nanoparticles, temperature-induced effectsAbstract
The temperature dependences of the energy and the width of a surface plasmon resonance are studied for copper nanoparticles 17–59 nm in size in the silica host matrix in the temperature interval 293–460 K. An increase of the temperature leads to the red shift and the broadening of the surface plasmon resonance in Cu nanoparticles. The obtained dependences are analyzed within the framework of a theoretical model considering the thermal expansion of a nanoparticle, the electron-phonon scattering in a nanoparticle, and the temperature dependence of the dielectric permittivity of the host matrix. The thermal expansion is shown to be the main mechanism responsible for the temperature-induced red shift of the surface plasmon resonance in copper nanoparticles. The thermal volume expansion coefficient for Cu nanoparticles is found to be size-independent in the studied size range. Meanwhile, the increase of the electron-phonon scattering rate with the temperature is shown to be the dominant mechanism of the surface plasmon resonance broadening in copper nanoparticles.
References
<li> U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995). C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Chichester, 1998).</li>
<li> B.G. Ershov, E. Janata, A. Henglein, and A. Fojtik, J Phys. Chem. 97, 4589 (1993). <a href="https://doi.org/10.1021/j100120a006">https://doi.org/10.1021/j100120a006</a></li>
<li> A. Henglein, J. Phys. Chem. 97, 5457 (1993). <a href="https://doi.org/10.1021/j100123a004">https://doi.org/10.1021/j100123a004</a></li>
<li> A. Barhoumi, D. Zhang, F. Tam, and N. Halas, J. Am. Chem. Soc. 130, 5523 (2008). <a href="https://doi.org/10.1021/ja800023j">https://doi.org/10.1021/ja800023j</a></li>
<li> F. Le, D. Brandl, Y. Urzhumov, H. Wang, J. Kundu, N. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008). <a href="https://doi.org/10.1021/nn800047e">https://doi.org/10.1021/nn800047e</a></li>
<li> G. Laurent, N. Felidj, J. Grand, J. Aubard, G. Levi, A. Hohenau, J. Krenn, and F. Aussenegg, J. of Microsc.-Oxford 229, 189 (2008).</li>
<li> R. Bakker, H. Yuan, Z. Liu, V. Drachev, A. Kildishev, V. Shalaev, R. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008). <a href="https://doi.org/10.1063/1.2836271">https://doi.org/10.1063/1.2836271</a></li>
<li> G. Gay, B. de Lesegno, R. Mathevet, J. Weiner, H. Lezec, and T. Ebbesen, Appl. Phys. B 81, 871 (2005). <a href="https://doi.org/10.1007/s00340-005-2016-x">https://doi.org/10.1007/s00340-005-2016-x</a></li>
<li> O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, M.Yu. Losytskyy, A.V. Kotko, and A.O. Pinchuk, Phys. Rev. B 79, 235438 (2009). <a href="https://doi.org/10.1103/PhysRevB.79.235438">https://doi.org/10.1103/PhysRevB.79.235438</a></li>
<li> A. Gobin, M. Lee, R. Drezek, N. Halas, and J. West, Clin. Cancer Res. 11, 9095S (2005).</li>
<li> C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, and P. Royer, Nano Lett. 5, 615 (2005). <a href="https://doi.org/10.1021/nl047956i">https://doi.org/10.1021/nl047956i</a></li>
<li> K. Kandere-Grzybowska, C. Campbell, Y. Komarova, B. Grzybowski, and G. Borisy, Nature Methods 2, 739 (2005). <a href="https://doi.org/10.1038/nmeth796">https://doi.org/10.1038/nmeth796</a></li>
<li> M. Choi, K.J. Stanton-Maxey, J.K. Stanley, C.S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J.P. Robinson, R. Bashir, N.J. Halas, and S.E. Clare, Nano Lett. 7, 3759 (2007). <a href="https://doi.org/10.1021/nl072209h">https://doi.org/10.1021/nl072209h</a></li>
<li> L. Hirsch, A. Gobin, A. Lowery, F. Tam, R. Drezek, N. Halas, and J. West, Annals Biomed. Engineering 34, 15 (2006). <a href="https://doi.org/10.1007/s10439-005-9001-8">https://doi.org/10.1007/s10439-005-9001-8</a></li>
<li> D. O'Neal, L. Hirsch, N. Halas, J. Payne, and J. West, Cancer Lett. 209, 171 (2004). <a href="https://doi.org/10.1016/j.canlet.2004.02.004">https://doi.org/10.1016/j.canlet.2004.02.004</a></li>
<li> D. Citrin, Nano Lett. 5, 985 (2005). <a href="https://doi.org/10.1021/nl050513+">https://doi.org/10.1021/nl050513+</a></li>
<li> J. Jung, T. Sondergaard, and S. Bozhevolnyi, Phys. Rev. B 76, 035434 (2007). <a href="https://doi.org/10.1103/PhysRevB.76.035434">https://doi.org/10.1103/PhysRevB.76.035434</a></li>
<li> K. Leosson, T. Nikolajsen, A. Boltasseva, and S. Bozhevolnyi, Opt. Express 14, 314 (2006). <a href="https://doi.org/10.1364/OPEX.14.000314">https://doi.org/10.1364/OPEX.14.000314</a></li>
<li> B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, Appl. Phys. Lett. 88, 094104 (2006). <a href="https://doi.org/10.1063/1.2180448">https://doi.org/10.1063/1.2180448</a></li>
<li> J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997). <a href="https://doi.org/10.1364/OL.22.000475">https://doi.org/10.1364/OL.22.000475</a></li>
<li> U. Kreibig, Appl. Phys. B 93, 79 (2008). <a href="https://doi.org/10.1007/s00340-008-3213-1">https://doi.org/10.1007/s00340-008-3213-1</a></li>
<li> W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X.M. Yang, X. Zhu, N.J. Gokemeijer, Y.-T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, and E.C. Gage, Nature Photon. 3, 303 (2009). <a href="https://doi.org/10.1038/nphoton.2009.71">https://doi.org/10.1038/nphoton.2009.71</a></li>
<li> L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, and J.L. West, Proc. Natl. Acad. Sci. USA 100, 13549 (2003). <a href="https://doi.org/10.1073/pnas.2232479100">https://doi.org/10.1073/pnas.2232479100</a></li>
<li> A. Lowery, A. Gobin, E. Day, N. Halas, and J. West, Breast Cancer Res. Treat. 100, S289 (2006).</li>
<li> A. Lowery, A. Gobin, E. Day, N. Halas, and J. West, Int. J. Nanomed. 1, 149 (2006). <a href="https://doi.org/10.2147/nano.2006.1.2.149">https://doi.org/10.2147/nano.2006.1.2.149</a></li>
<li> L. Cao, D.N. Barsic, A.R. Guichard, and M.L. Brongersma, Nano Lett. 7, 3523 (2007). <a href="https://doi.org/10.1021/nl0722370">https://doi.org/10.1021/nl0722370</a></li>
<li> W. Cai, J.S. White, and M.L. Brongersma, Nano Lett. 9, 4403 (2009). <a href="https://doi.org/10.1021/nl902701b">https://doi.org/10.1021/nl902701b</a></li>
<li> U. Kreibig, J. Phys. F 4, 999 (1974). <a href="https://doi.org/10.1088/0305-4608/4/7/007">https://doi.org/10.1088/0305-4608/4/7/007</a></li>
<li> R.H. Doremus, J. Chem. Phys. 40, 2389 (1964). <a href="https://doi.org/10.1063/1.1725519">https://doi.org/10.1063/1.1725519</a></li>
<li> R.H. Doremus, J. Chem. Phys. 42, 414 (1965). <a href="https://doi.org/10.1063/1.1695709">https://doi.org/10.1063/1.1695709</a></li>
<li> P. Mulvaney, in Nanoscale Materials in Chemistry, edited by K.J. Klabunde (Wiley, New York, 2001), p. 121. <a href="https://doi.org/10.1002/0471220620.ch5">https://doi.org/10.1002/0471220620.ch5</a></li>
<li> J.-S.G. Bouillard, W. Dickson, D.P. O'Connor, G.A. Wurtz, and A.V. Zayats, Nano Lett. 12, 1561 (2012). <a href="https://doi.org/10.1021/nl204420s">https://doi.org/10.1021/nl204420s</a></li>
<li> D.Yu. Fedyanin, A.V. Krasavin, A.V. Arsenin, and A.V. Zayats, Nano Lett. 12, 2459 (2012). <a href="https://doi.org/10.1021/nl300540x">https://doi.org/10.1021/nl300540x</a></li>
<li> S. Link and M.A. El-Sayed, J. Phys. Chem. B 103, 4212 (1999). <a href="https://doi.org/10.1021/jp984796o">https://doi.org/10.1021/jp984796o</a></li>
<li> O.A. Yeshchenko, I. M. Dmitruk, A.A. Alexeenko, A.V. Kotko, J. Verdal, and A.O. Pinchuk, Plasmonics 7, 685 (2012). <a href="https://doi.org/10.1007/s11468-012-9359-z">https://doi.org/10.1007/s11468-012-9359-z</a></li>
<li> U. Kreibig and U. Genzel, Surf. Sci. 156, 678 (1985). <a href="https://doi.org/10.1016/0039-6028(85)90239-0">https://doi.org/10.1016/0039-6028(85)90239-0</a></li>
<li> S. Link and M. El-Sayed, J. Phys. Chem. B 103, 8410 (1999). <a href="https://doi.org/10.1021/jp9917648">https://doi.org/10.1021/jp9917648</a></li>
<li> C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2005).</li>
<li> N.I. Grigorchuk and P.M. Tomchuk, Phys. Rev. B 84 085448 (2011). <a href="https://doi.org/10.1103/PhysRevB.84.085448">https://doi.org/10.1103/PhysRevB.84.085448</a></li>
<li> K. Ujihara, J Appl. Phys. 43, 2374 (1972). <a href="https://doi.org/10.1063/1.1661506">https://doi.org/10.1063/1.1661506</a></li>
<li> N.W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).</li>
<li> R.H. Bube, Electrons in Solids: An Introductory Survey (Academic Press, London, 1992).</li>
<li> Z. Li-Jun, G. Jian-Gang, and Z. Ya-Pu, Chin. Phys. Lett. 26, 066201 (2009). <a href="https://doi.org/10.1088/0256-307X/26/6/066201">https://doi.org/10.1088/0256-307X/26/6/066201</a></li>
<li> J.H. Wray and J.T. Neu, J. Opt. Soc. Am. 59, 774 (1969). <a href="https://doi.org/10.1364/JOSA.59.000774">https://doi.org/10.1364/JOSA.59.000774</a></li>
<li> P.B. Johnson and R.W. Christy, Phys. Rev. B 6, 4370 (1972). <a href="https://doi.org/10.1103/PhysRevB.6.4370">https://doi.org/10.1103/PhysRevB.6.4370</a></li>
<li> R.C. Lincoln, K.M. Koliwad, and P.B. Ghate, Phys. Rev. 157, 463 (1967). <a href="https://doi.org/10.1103/PhysRev.157.463">https://doi.org/10.1103/PhysRev.157.463</a></li>
</ol>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.