Temperature Effects on the Surface Plasmon Resonance in Copper Nanoparticles

  • O. A. Yeshchenko Faculty of Physics, Taras Shevchenko National University of Kyiv
Keywords: surface plasmon resonance, copper nanoparticles, temperature-induced effects


The temperature dependences of the energy and the width of a surface plasmon resonance are studied for copper nanoparticles 17–59 nm in size in the silica host matrix in the temperature interval 293–460 K. An increase of the temperature leads to the red shift and the broadening of the surface plasmon resonance in Cu nanoparticles. The obtained dependences are analyzed within the framework of a theoretical model considering the thermal expansion of a nanoparticle, the electron-phonon scattering in a nanoparticle, and the temperature dependence of the dielectric permittivity of the host matrix. The thermal expansion is shown to be the main mechanism responsible for the temperature-induced red shift of the surface plasmon resonance in copper nanoparticles. The thermal volume expansion coefficient for Cu nanoparticles is found to be size-independent in the studied size range. Meanwhile, the increase of the electron-phonon scattering rate with the temperature is shown to be the dominant mechanism of the surface plasmon resonance broadening in copper nanoparticles.


  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995). C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Chichester, 1998).

  2. B.G. Ershov, E. Janata, A. Henglein, and A. Fojtik, J Phys. Chem. 97, 4589 (1993). https://doi.org/10.1021/j100120a006

  3. A. Henglein, J. Phys. Chem. 97, 5457 (1993). https://doi.org/10.1021/j100123a004

  4. A. Barhoumi, D. Zhang, F. Tam, and N. Halas, J. Am. Chem. Soc. 130, 5523 (2008). https://doi.org/10.1021/ja800023j

  5. F. Le, D. Brandl, Y. Urzhumov, H. Wang, J. Kundu, N. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008). https://doi.org/10.1021/nn800047e

  6. G. Laurent, N. Felidj, J. Grand, J. Aubard, G. Levi, A. Hohenau, J. Krenn, and F. Aussenegg, J. of Microsc.-Oxford 229, 189 (2008).

  7. R. Bakker, H. Yuan, Z. Liu, V. Drachev, A. Kildishev, V. Shalaev, R. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008). https://doi.org/10.1063/1.2836271

  8. G. Gay, B. de Lesegno, R. Mathevet, J. Weiner, H. Lezec, and T. Ebbesen, Appl. Phys. B 81, 871 (2005). https://doi.org/10.1007/s00340-005-2016-x

  9. O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, M.Yu. Losytskyy, A.V. Kotko, and A.O. Pinchuk, Phys. Rev. B 79, 235438 (2009). https://doi.org/10.1103/PhysRevB.79.235438

  10. A. Gobin, M. Lee, R. Drezek, N. Halas, and J. West, Clin. Cancer Res. 11, 9095S (2005).

  11. C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, and P. Royer, Nano Lett. 5, 615 (2005). https://doi.org/10.1021/nl047956i

  12. K. Kandere-Grzybowska, C. Campbell, Y. Komarova, B. Grzybowski, and G. Borisy, Nature Methods 2, 739 (2005). https://doi.org/10.1038/nmeth796

  13. M. Choi, K.J. Stanton-Maxey, J.K. Stanley, C.S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J.P. Robinson, R. Bashir, N.J. Halas, and S.E. Clare, Nano Lett. 7, 3759 (2007). https://doi.org/10.1021/nl072209h

  14. L. Hirsch, A. Gobin, A. Lowery, F. Tam, R. Drezek, N. Halas, and J. West, Annals Biomed. Engineering 34, 15 (2006). https://doi.org/10.1007/s10439-005-9001-8

  15. D. O'Neal, L. Hirsch, N. Halas, J. Payne, and J. West, Cancer Lett. 209, 171 (2004). https://doi.org/10.1016/j.canlet.2004.02.004

  16. D. Citrin, Nano Lett. 5, 985 (2005). https://doi.org/10.1021/nl050513+

  17. J. Jung, T. Sondergaard, and S. Bozhevolnyi, Phys. Rev. B 76, 035434 (2007). https://doi.org/10.1103/PhysRevB.76.035434

  18. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. Bozhevolnyi, Opt. Express 14, 314 (2006). https://doi.org/10.1364/OPEX.14.000314

  19. B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, Appl. Phys. Lett. 88, 094104 (2006). https://doi.org/10.1063/1.2180448

  20. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997). https://doi.org/10.1364/OL.22.000475

  21. U. Kreibig, Appl. Phys. B 93, 79 (2008). https://doi.org/10.1007/s00340-008-3213-1

  22. W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X.M. Yang, X. Zhu, N.J. Gokemeijer, Y.-T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, and E.C. Gage, Nature Photon. 3, 303 (2009). https://doi.org/10.1038/nphoton.2009.71

  23. L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, and J.L. West, Proc. Natl. Acad. Sci. USA 100, 13549 (2003). https://doi.org/10.1073/pnas.2232479100

  24. A. Lowery, A. Gobin, E. Day, N. Halas, and J. West, Breast Cancer Res. Treat. 100, S289 (2006).

  25. A. Lowery, A. Gobin, E. Day, N. Halas, and J. West, Int. J. Nanomed. 1, 149 (2006). https://doi.org/10.2147/nano.2006.1.2.149

  26. L. Cao, D.N. Barsic, A.R. Guichard, and M.L. Brongersma, Nano Lett. 7, 3523 (2007). https://doi.org/10.1021/nl0722370

  27. W. Cai, J.S. White, and M.L. Brongersma, Nano Lett. 9, 4403 (2009). https://doi.org/10.1021/nl902701b

  28. U. Kreibig, J. Phys. F 4, 999 (1974). https://doi.org/10.1088/0305-4608/4/7/007

  29. R.H. Doremus, J. Chem. Phys. 40, 2389 (1964). https://doi.org/10.1063/1.1725519

  30. R.H. Doremus, J. Chem. Phys. 42, 414 (1965). https://doi.org/10.1063/1.1695709

  31. P. Mulvaney, in Nanoscale Materials in Chemistry, edited by K.J. Klabunde (Wiley, New York, 2001), p. 121. https://doi.org/10.1002/0471220620.ch5

  32. J.-S.G. Bouillard, W. Dickson, D.P. O'Connor, G.A. Wurtz, and A.V. Zayats, Nano Lett. 12, 1561 (2012). https://doi.org/10.1021/nl204420s

  33. D.Yu. Fedyanin, A.V. Krasavin, A.V. Arsenin, and A.V. Zayats, Nano Lett. 12, 2459 (2012). https://doi.org/10.1021/nl300540x

  34. S. Link and M.A. El-Sayed, J. Phys. Chem. B 103, 4212 (1999). https://doi.org/10.1021/jp984796o

  35. O.A. Yeshchenko, I. M. Dmitruk, A.A. Alexeenko, A.V. Kotko, J. Verdal, and A.O. Pinchuk, Plasmonics 7, 685 (2012). https://doi.org/10.1007/s11468-012-9359-z

  36. U. Kreibig and U. Genzel, Surf. Sci. 156, 678 (1985). https://doi.org/10.1016/0039-6028(85)90239-0

  37. S. Link and M. El-Sayed, J. Phys. Chem. B 103, 8410 (1999). https://doi.org/10.1021/jp9917648

  38. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2005).

  39. N.I. Grigorchuk and P.M. Tomchuk, Phys. Rev. B 84 085448 (2011). https://doi.org/10.1103/PhysRevB.84.085448

  40. K. Ujihara, J Appl. Phys. 43, 2374 (1972). https://doi.org/10.1063/1.1661506

  41. N.W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).

  42. R.H. Bube, Electrons in Solids: An Introductory Survey (Academic Press, London, 1992).

  43. Z. Li-Jun, G. Jian-Gang, and Z. Ya-Pu, Chin. Phys. Lett. 26, 066201 (2009). https://doi.org/10.1088/0256-307X/26/6/066201

  44. J.H. Wray and J.T. Neu, J. Opt. Soc. Am. 59, 774 (1969). https://doi.org/10.1364/JOSA.59.000774

  45. P.B. Johnson and R.W. Christy, Phys. Rev. B 6, 4370 (1972). https://doi.org/10.1103/PhysRevB.6.4370

  46. R.C. Lincoln, K.M. Koliwad, and P.B. Ghate, Phys. Rev. 157, 463 (1967). https://doi.org/10.1103/PhysRev.157.463

How to Cite
Yeshchenko, O. (2018). Temperature Effects on the Surface Plasmon Resonance in Copper Nanoparticles. Ukrainian Journal of Physics, 58(3), 249. https://doi.org/10.15407/ujpe58.03.0249