Structural Researches of Carbonic Fluid Nanosystems

  • O. A. Kyzyma Taras Shevchenko National University of Kyiv, Joint Institute for Nuclear Research
  • A. V. Tomchuk Taras Shevchenko National University of Kyiv, Joint Institute for Nuclear Research
  • M. V. Avdeev Joint Institute for Nuclear Research
  • T. V. Tropin Joint Institute for Nuclear Research
  • V. L. Aksenov B.P. Konstantinov Petersburg Nuclear Physics Institute, Joint Institute for Nuclear Research
  • M. V. Korobov Lomonosov Moscow State University
Keywords: fullerenes, nanodiamonds, small-angle neutron scattering

Abstract

The results of researches concerning the cluster state in a number of disperse carbonic materials that are widely used in modern applications, including fullerenes and detonation nanodiamonds, are reported. With the help of the small-angle neutron scattering (SANS) method, some basic aspects of clustering in such systems are elucidated. At the same time, for the most effective and reliable description of a cluster structure under various conditions, a complex analysis involving complementary experimental and calculation techniques is applied. The experimental aspects of SANS applications are emphasized, and a qualitatively new idea of the structure of analyzed systems is formulated.

References

W. Kratschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffman, Nature 347, 354 (1990).

http://dx.doi.org/10.1038/347354a0

L. Dai, in Carbon Nanotechnology, edited by L. Dai (Elsevier, Amsterdam, 2006), p. 3.

http://dx.doi.org/10.1016/B978-044451855-2/50004-8

M. Ozawa, M. Inakuma, M. Takahashi et al., Adv. Mater. 19, 1201 (2007).

http://dx.doi.org/10.1002/adma.200601452

Yu.I. Prylutskyy, M.P. Evstigneev, V.V. Cherepanov et al., J. Nanopart. Res. 17, 45 (2015).

http://dx.doi.org/10.1007/s11051-015-2867-y

A.W. Jensen, S.R. Wilson, and D.I. Schuster, Bioorg. Med. Chem. 4, 767 (1996).

http://dx.doi.org/10.1016/0968-0896(96)00081-8

S.R. Wilson, in Fullerenes: Chemistry, Physics and Technology, edited by K.M. Kadish and R.S. Ruoff (Wiley, New York, 2000), p. 437.

L.B. Piotrovskii, M.Yu.Eropkin, E.M. Eropkina et al., Psikhofarm. Biol. Narkol. 7, 1548 (2007).

T. Tsuchiya, Y. Yamakoshi, and N. Miyata, Biochem. Biophys. Res. Commun. 206, 885 (1995).

http://dx.doi.org/10.1006/bbrc.1995.1126

L.L. Dugan, D.M. Turetsky, C. Du et al., Proc. Natl. Acad. Sci. USA. 94, 9434 (1997).

http://dx.doi.org/10.1073/pnas.94.17.9434

D.M. Guldi and K.D. Asmus, Radiat. Phys. Chem. 56, 449 (1999).

http://dx.doi.org/10.1016/S0969-806X(99)00325-4

R.V. Bensasson, M. Brettreich, J. Frederiksen et al., Free Rad. Biol. Med. 29, 26 (2000).

http://dx.doi.org/10.1016/S0891-5849(00)00287-2

E. Oberdorster, Environ. Health Perspect. 112, 1058 (2004).

http://dx.doi.org/10.1289/ehp.7021

S.H. Friedman, D.L. DeCamp, R.P. Sijbesma et al., J. Am. Chem. Soc. 115, 6505 (1993).

http://dx.doi.org/10.1021/ja00068a005

H. Tokuyama, S. Yamago, and E. Nakamura, J. Am. Chem. Soc. 115, 7918 (1993).

http://dx.doi.org/10.1021/ja00070a064

Y. Iwamoto and Y. Yamakoshi, J. Chem. Commun. 46, 4805 (2006).

http://dx.doi.org/10.1039/B614305A

Y. Yamakoshi, N. Umezawa, A. Ryu et al., J. Am. Chem. Soc. 125, 12803 (2003).

http://dx.doi.org/10.1021/ja0355574

A. Ikeda, T. Sato, K. Kitamura et al., Org. Biomol.Chem. 3, 2907, (2005).

http://dx.doi.org/10.1039/b507954c

L.B. Piotrovskii, K.N. Kozeletskaya, N.A. Medvedev et al., Vopr. Virusolog. 3, 38 (2001).

A.K. Sirotkin, L.B. Piotrovskii, L.N. Poznyakova, and O.I. Kiselev, Vopr. Biol. Med. Farm. Khim. 3, 21 (2005).

V.L. Colvin, Nat. Biotechnol. 21, 1166 (2003).

http://dx.doi.org/10.1038/nbt875

Z. Tong, Environ. Sci. Technol. 41, 2985 (2007).

http://dx.doi.org/10.1021/es061953l

B. Xie, Environ. Sci. Technol. 42, 2853 (2008).

http://dx.doi.org/10.1021/es702231g

V.N. Bezmelnittsyn, A.B. Eletskii, and M.V. Okun', Usp. Fiz. Nauk 168, 1195 (1998).

http://dx.doi.org/10.3367/UFNr.0168.199811b.1195

M.V. Avdeev, V.L. Aksenov, and T.V. Tropin, Rus. J. Phys. Chem. A Iss. 84, No. 8, 1273 (2010).

N.O. Mchedlov-Petrossyan, Khim. Fiz. Tekhnol. Poverkh. 1, 19 (2010).

N.O. Mchedlov-Petrossyan. Chem. Rev. 113, 5149 (2013).

http://dx.doi.org/10.1021/cr3005026

O.A. Shenderova, V.V. Zhirnov, and D.W. Brenner, Crit. Rev. Solid State Mater. Sci. 27, 227 (2002).

http://dx.doi.org/10.1080/10408430208500497

E. Osawa, Pure Appl. Chem. 80, 1365 (2008).

http://dx.doi.org/10.1351/pac200880071365

A.E. Aleksenskii, M.V. Baidakova, A.Ya.Vul, and V.I. Siklitskii, Fiz. Tverd. Tela 41, 740 (1999).

N.I. Chkhalo, M.V. Fedorchenko, E.P. Kruglyakov et al., Nucl. Instrum. Methods A 359, 155 (1995).

http://dx.doi.org/10.1016/0168-9002(94)01387-X

T. Fujimura, V.Yu. Dolmatov, G.K. Burkat et al., Diamond Rel. Mater. 13, 2226 (2004).

http://dx.doi.org/10.1016/j.diamond.2004.06.009

L.N. Tsai, G.R. Shen, Y.T. Cheng, and W. Hsu, J. Microelectromech. Syst. 15, 149 (2006).

http://dx.doi.org/10.1109/JMEMS.2005.863737

R.J. Narayan, Diamond Relat. Mater. 12, 33 (2006).

E.A. Ekimov, E.L. Gromnitskaya, S. Gierlotka et al., J. Mater. Sci. Lett. 21, 1699 (2002).

http://dx.doi.org/10.1023/A:1020889129195

B. Yanchuk, M.Y. Valakh, A.Yu. Vul' et al., Diamond Relat. Mater. 13, 266 (2004).

http://dx.doi.org/10.1016/j.diamond.2003.11.001

A. Hiraki, Appl. Surf. Sci. 162-163, 326 (2000).

http://dx.doi.org/10.1016/S0169-4332(00)00211-7

K.B. Holt, Phil. Trans. Royal Soc. A 365, 2845 (2007).

http://dx.doi.org/10.1098/rsta.2007.0005

J.I. Chao, E. Perevedentseva, P.H. Chung et al., Biophys. J. 93, 2199 (2007).

http://dx.doi.org/10.1529/biophysj.107.108134

G.V. Sakhovich, V.D. Gubarevich, F.Z. Badaev et al., Dokl. Akad. Nauk SSSR 310, 402 (1990).

G.A. Chiganova, Kolloidn. Zh. 59, 93 (1997).

G.A. Chiganova, Kolloidn. Zh. 62, 272 (2000).

E.E. Lin, Sov. J. Chem. Phys. 12, 404 (1994).

A.E. Aleksenskii, V.Y. Osipov, A.T. Dideykin et al., Tech. Phys. Lett. 26, 819 (2000).

http://dx.doi.org/10.1134/1.1315505

A. Kruger, F. Kataoka, M. Ozawa et al., Carbon 43, 1722 (2005).

http://dx.doi.org/10.1016/j.carbon.2005.02.020

E.D. Eidelman, V.I. Siklitsky, L.V. Sharonova et al., Diamond Rel. Mater. 14, 1765 (2005).

http://dx.doi.org/10.1016/j.diamond.2005.08.057

M.V. Korobov, N.V. Avramenko, A.G. Bogachev et al., J. Phys. Chem. C 111, 7330 (2007).

http://dx.doi.org/10.1021/jp0683420

R.S. Ruoff, D.S. Tse, R. Malhotra, and D.C. Lorents, J. Phys. Chem. 97, 3379 (1993).

http://dx.doi.org/10.1021/j100115a049

M.V. Korobov and A.L. Smith, in Fullerenes: Chemistry, Physics and Technology, edited by K.M. Kadish and R.S. Ruoff (Wiley, New York, 2000), p. 53.

K.N. Semenov, N.A. Charykov, A.K. Pyartman et al., Zh. Fiz. Khim. 82, 843 (2008).

K.N. Semenov, N.A. Charykov, and O.V. Arapov, Zh. Fiz. Khim. 82, 1483 (2008).

K.N. Semenov, N.A. Charykov, O.V. Arapov, and M.A.Trofimova, Zh. Fiz. Khim. 82, 2193 (2008).

M. Sano, K. Oishi, T. Ishii, and S. Shinkai, Langmuir 16, 3773 (2000).

http://dx.doi.org/10.1021/la991550h

D.T. Lai, M.A. Neumann, M. Matsumoto, and J. Sunamoto, Chem. Lett. 29, 64 (2000).

http://dx.doi.org/10.1246/cl.2000.64

T. Andersson, K. Nilsson, M. Sundahl et al., J. Chem. Soc. Chem. Commun. 8, 604 (1992).

http://dx.doi.org/10.1039/C39920000604

Y. Yamakoshi, T. Yagami, K. Fukuhara et al., J. Chem. Soc. Chem. Commun. 517 (1994).

http://dx.doi.org/10.1039/c39940000517

J. Eastoe, E.R. Crooks, A. Beeby, and R.K. Heenan, Chem. Phys. Lett. 245, 571 (1995).

http://dx.doi.org/10.1016/0009-2614(95)01059-I

B. Sitharaman, S. Asokan, I. Rusakova et al., Nano Lett. 4, 1759 (2004).

http://dx.doi.org/10.1021/nl049315t

W.A. Scrivence and J.M. Tour, J. Am. Chem. Soc. 116, 4517 (1994).

http://dx.doi.org/10.1021/ja00089a067

G.V. Andrievsky, M.V. Kosevich, O.M. Vovk et al., J. Chem. Soc. Chem. Commun. 12, 1281 (1995).

http://dx.doi.org/10.1039/c39950001281

S. Deguchi, R.G. Alargova, and K. Tsujii, Langmuir 17, 6013 (2001).

http://dx.doi.org/10.1021/la010651o

M.V. Avdeev, A.A. Khokhryakov, T.V. Tropin et al., Langmuir 20, 4363 (2004).

http://dx.doi.org/10.1021/la0361969

P. Scharff, K. Risch, L. Carta-Abelmann et al., Carbon 42, 1203 (2004).

http://dx.doi.org/10.1016/j.carbon.2003.12.053

J.A. Brant, J. Labille, J.Y. Bottero, and M.R. Wiesner, Langmuir 22, 1794 (2006).

http://dx.doi.org/10.1021/la053293o

Yu.I. Prilutski, E.V. Buzaneva, L.A. Bulavin, and P. Scharff, Carbon 37, 835 (1999).

http://dx.doi.org/10.1016/S0008-6223(98)00280-2

A.L. Smith, J. Phys. B 29, 4975 (1996).

http://dx.doi.org/10.1088/0953-4075/29/21/011

A.F. Hebard, R.C. Haddon, R.M. Fleming, and A.R. Kortan, Appl. Phys. Lett. 59, 2109 (1991).

http://dx.doi.org/10.1063/1.106095

S. Kazaoui, R. Ross, and N. Minami, Solid State Commun. 90, 623 (1994).

http://dx.doi.org/10.1016/0038-1098(94)90534-7

Q. Ying, J. Marecek, and B. Chu, Chem. Phys. Lett. 219, 214 (1994).

http://dx.doi.org/10.1016/0009-2614(94)87047-0

Q. Ying, J. Marecek, and B. Chu, J. Chem. Phys. 101, 4 (1994).

http://dx.doi.org/10.1063/1.467646

T. Rudalevige, A.H. Francis, and R. Zand, J. Phys. Chem. A 102, 9797 (1998).

http://dx.doi.org/10.1021/jp9832591

S. Nath, H. Pal, and A.V. Sapre, Chem. Phys. Lett. 327, 143 (2000).

http://dx.doi.org/10.1016/S0009-2614(00)00863-0

G. Torok, V.T. Lebedev, and L. Cser, Fiz. Tverd. Tela 44, 3 (2002).

Y. Prylutskyy, S. Durov, L. Bulavin et al., Mol. Cryst. Liq. Cryst. Sci. Technol. 324, 65 (1998).

http://dx.doi.org/10.1080/10587259808047135

A.D. Bokare and A. Patnaik, J. Chem. Phys. 119, 4529 (2003).

http://dx.doi.org/10.1063/1.1594177

M.V. Avdeev, T.V. Tropin, V.L. Aksenov et al., J. Surf. Investigation. X-ray, Synchrotron and Neutron Techniques Iss. 2, No. 6, 819 (2008).

http://dx.doi.org/10.1134/S1027451008060013

K.A. Affholter, S.J. Henderson, G.D. Wignall et al., J. Chem. Phys. 99, 9224 (1993).

http://dx.doi.org/10.1063/1.465538

L.A. Girifalco, J. Phys. Chem. 96, 858 (1992).

http://dx.doi.org/10.1021/j100181a061

C. Gripon, L. Legrand, I. Rosenman, and F. Boue, Fulleren. Nanotub. Carbon Nanostruct. 4, 1195 (1996).

Y.B. Melnichenko, G.D. Wignall, R.N. Compton, and G. Bakale, J. Chem. Phys. 111, 4724 (1999).

http://dx.doi.org/10.1063/1.479234

S.J. Henderson, Langmuir 13, 6139 (1997).

http://dx.doi.org/10.1021/la970682c

F. Migliardo, V. Magazu, and M. Migliardo, J. Mol. Liq. 110, 3 (2004).

http://dx.doi.org/10.1016/j.molliq.2003.08.010

T.V. Tropin, M.V. Avdeev, and V.L. Aksenov, Fulleren. Nanotub. Carbon Nanostruct. 16, 616 (2008).

http://dx.doi.org/10.1080/15363830802313014

M.V. Avdeev, T.V. Tropin, I.A. Bodnarchuk et al., J. Chem. Phys. 132, 164515 (2010).

http://dx.doi.org/10.1063/1.3415500

A.Yu. Teterev, M.V. Avdeev, M. Kholmurodov and V.L. Aksenov, in Proceedings of the International Workshop on Molecular Simulation Studies in Material and Biological Sciences, edited by Kh.T. Kholmurodov (Nova Science, New York, 2007), P. 129134.

A. Mrzel, A. Mertelj, A. Omerzu et al., J. Phys. Chem. 103, 11256 (1999).

http://dx.doi.org/10.1021/jp992637e

M. Alfe, B. Apicella, R. Barbarella et al., Chem. Phys. Lett. 405, 193 (2005).

http://dx.doi.org/10.1016/j.cplett.2005.02.030

S. Nath, H. Pal, D.K. Palit et al., J. Phys. Chem. B 102, 10158 (1998).

http://dx.doi.org/10.1021/jp9824149

I. Baltog, M. Baibarac, L. Mihut et al., Romanian Rep. Phys. 57, 837 (2005).

H.N. Ghosh, A.V. Sapre, and J.P. Mittal, J. Phys. Chem. 100, 9439 (1996).

http://dx.doi.org/10.1021/jp9535046

J.A. Nisha, M. Premila, V. Sridharan et al., Carbon 36, 637 (1998).

http://dx.doi.org/10.1016/S0008-6223(98)00032-3

S. Nath, H. Pal, and A.V. Sapre, Chem. Phys. Lett. 360, 422 (2002).

http://dx.doi.org/10.1016/S0009-2614(02)00780-7

Yu.F. Biryulin, N.P. Yevlampieva, E.Yu. Melenevskaya et al., Pis'ma Zh. Eksp. Teor. Fiz. 26, 1405 (2000).

J. Cheng, Y. Fang, Q. Huang et al., Chem. Phys. Lett. 330, 262 (2000).

http://dx.doi.org/10.1016/S0009-2614(00)01115-5

N.P. Yevlampieva, Yu.F. Biryulin, E.Yu. Melenevskaja et al., Coll. Surf. A 209, 167 (2002).

http://dx.doi.org/10.1016/S0927-7757(02)00177-2

V.L. Aksenov, M.V. Avdeev, O.A. Kyzyma et al., Kristallogr. 52, 479 (2007).

O.A. Kyzyma, L.A. Bulavin, V.L. Aksenov et al., Mater. Struct. 15, 17, (2008).

S. Mochizuki, M. Sasaki, and R. Ruppin, J. Phys. Condens. Matter. 10, 2347 (1998).

http://dx.doi.org/10.1088/0953-8984/10/10/015

P.M. Allemand, A. Koch, F. Wudl et al., J. Am. Chem. Soc. 113, 1050 (1991).

http://dx.doi.org/10.1021/ja00003a053

R.J. Sension, A.Z. Szarka, G.R. Smith, and R.M. Hochstrasser, Chem. Phys. Lett. 185, 179 (1991).

http://dx.doi.org/10.1016/S0009-2614(91)85043-V

Y. Wang, J. Phys. Chem. 96, 764 (1992).

http://dx.doi.org/10.1021/j100181a044

O.A. Kyzyma, M.V. Korobov, M.V. Avdeev et al., Chem. Phys. Lett. 493, 103 (2010).

http://dx.doi.org/10.1016/j.cplett.2010.04.076

O.A. Kyzyma, L.A. Bulavin, V.L. Aksenov et al., Fulleren. Nanotub. Carbon Nanostruct. 16, 610 (2008).

http://dx.doi.org/10.1080/15363830802312982

O.B. Karpenko, S.V. Snegir, O.A. Kyzyma et al., Nanosyst. Nanomater. Nanotekhnol. 10, 763 (2012).

E.A. Kyzyma, M.V. Avdeev, V.L.Aksenov et al., J. Surf. Investigation. X-ray, Synchrotron and Neutron Techniques 12, 11 (2008).

O.B. Karpenko, V.V. Trachevskyi, O.V. Filonenko et al., Ukr. Fiz. Zh. 57, 863 (2012).

T.V. Tropin, M.V. Avdeev, O.A. Kyzyma, and V.L. Aksenov, Phys. Status Solidi B 247, 3022 (2010).

http://dx.doi.org/10.1002/pssb.201000119

T.V. Tropin, M.V. Avdeev, O.A. Kyzyma et al., Phys. Status Solidi B 248, 2728 (2011).

http://dx.doi.org/10.1002/pssb.201100099

T.V. Tropin, N. Jargalan, M.V. Avdeev et al., J. Mol. Liq. 175, 4 (2012).

http://dx.doi.org/10.1016/j.molliq.2012.08.003

T.V. Tropin, N. Jargalan, M.V. Avdeev et al., Fiz. Tverd. Tela 56, 147 (2014).

V.L. Aksenov, T.V. Tropin, O.A. Kyzyma, et al., Phys. Solid State 52, 1059 (2010).

http://dx.doi.org/10.1134/S1063783410050367

V.L. Aksenov, M.V. Avdeev, A.A. Timchenko et al., in Frontiers of Multifunctional Nanosystems, edited by E. Buzaneva and P. Scharff (Kluwer, Dordrecht, 2002), p. 281.

http://dx.doi.org/10.1007/978-94-010-0341-4_20

V.L. Aksenov, M.V. Avdeev, T.V. Tropin et al., Physica B 385–386, 795 (2006).

http://dx.doi.org/10.1016/j.physb.2006.06.086

O.A. Kyzyma, M.V. Korobov, M.V. Avdeev et al., Fulleren. Nanotub. Carbon Nanostruct. 18, 458 (2010).

http://dx.doi.org/10.1080/1536383X.2010.487778

A.A. Kaznacheevskaya, O.A. Kyzyma, L.A. Bulavin et al., J. Surf. Invest. X-ray, Synchrotron and Neutron Techniques, Iss. 7 No. 6, 1133 (2013).

O.A. Kyzyma, T.O. Kyrey, M.V. Avdeev et al., Chem. Phys. Lett. 556, 178 (2013).

http://dx.doi.org/10.1016/j.cplett.2012.11.040

T.O. Kyrey, O.A. Kyzyma, M.V. Avdeev et al., Fulleren. Nanotub. Carbon Nanostruct. 20, 341 (2012).

http://dx.doi.org/10.1080/1536383X.2012.655173

T.V. Tropin, T.A. Kirei, E.A. Kyzyma et al., J. Surf. Invest. X-ray, Synchrotron and Neutron Techniques, Iss. 7 No. 1, 1 (2013).

R.G. Alargova, S. Deguchi, and K. Tsujii, J. Am. Chem. Soc. 123, 10460 (2001).

http://dx.doi.org/10.1021/ja010202a

M.V. Korobov, E.B. Stukalin, N.I. Ivanova et al., in Proceedings of the 201st Meeting of the Electrochemical Society, edited by P. Kamat, D. Guldi, and K. Kadish (Electrochem. Soc., Pennington, NJ, 2002), Vol. 12., p. 799.

A.A. Khokhryakov, M.V. Avdeev, T.V. Tropin et al., Kristallogr. 49, 142 (2004).

A.A. Khokhryakov, M.V. Avdeev, O.A. Kyzyma et al., Kristallogr. 52, 487 (2007).

A.O. Khokhryakov, M.V. Avdeev, V.L. Aksenov, and L.A. Bulavin, J. Mol. Liq. 127, 73 (2006).

http://dx.doi.org/10.1016/j.molliq.2006.03.019

Y. Prylutskyy, V. Petrenko, O. Ivankov et al., Langmuir 30, 3967 (2014).

http://dx.doi.org/10.1021/la404976k

D.Y. Lyon, L.K. Adams, J.C. Falkner, and P.J. Alvarez, J. Environ. Sci. Technol. 40, 4360 (2006).

http://dx.doi.org/10.1021/es0603655

E.A. Kyzyma, A.A. Tomchuk, L.A. Bulavin et al., J. Surf. Invest. X-ray, Synchrotron and Neutron Techniques, Iss. 9, No. 1, 1 (2015).

M.V. Avdeev, V.L. Aksenov, and L. Rosta, Diamond Rel. Mater. 16, 2050 (2007).

http://dx.doi.org/10.1016/j.diamond.2007.07.023

M.V. Avdeev, N.N. Rozhkova, V.L. Aksenov et al., J. Phys. Chem. C 113, 9473 (2009).

http://dx.doi.org/10.1021/jp900424p

A.V. Tomchuk, M.V. Avdeev, L.A. Bulavin et al., Physics of Particles and Nuclei Letters Iss. 8, No. 10, 1046 (2011).

http://dx.doi.org/10.1134/S1547477111100177

A.V.Tomchuk, M.V. Avdeev, V.L. Aksenov et al., J. Surf. Invest. X-ray, Synchrotron and Neutron Techniques, Iss. 6, No. 5, 821 (2012).

O.V. Tomchuk, L.A. Bulavin, V.L. Aksenov et al., J. Appl. Cryst. 47, 642 (2014).

http://dx.doi.org/10.1107/S1600576714001216

O.V. Tomchuk, D.S. Volkov, L.A. Bulavin et al., J. Phys. Chem. C 119, 794 (2015).

http://dx.doi.org/10.1021/jp510151b

S. Osswald, G. Yushin, V. Mochalin et al., J. Amer. Chem. Soc. 128, 11635 (2006).

http://dx.doi.org/10.1021/ja063303n

A.M. Panich, A.I. Shames, H.-M. Vieth et al., Eur. Phys. J. B 52, 397 (2006).

http://dx.doi.org/10.1140/epjb/e2006-00314-7

M.V. Avdeev, V.L. Aksenov, O.V. Tomchuk et al., J. Phys. Condens. Matter 25, 445001 (2013).

http://dx.doi.org/10.1088/0953-8984/25/44/445001

Published
2019-01-15
How to Cite
Kyzyma, O., Tomchuk, A., Avdeev, M., Tropin, T., Aksenov, V., & Korobov, M. (2019). Structural Researches of Carbonic Fluid Nanosystems. Ukrainian Journal of Physics, 60(9), 835. https://doi.org/10.15407/ujpe60.09.0835
Section
Soft matter

Most read articles by the same author(s)