Поверхневий плазмонний резонанс у наноструктурі “моношар наночастинок Ni/діелектричний прошарок/плівка Au (Ni)”

Зміна шляхом варіації товщини діелектричного прошарку

Автор(и)

  • O. A. Yeshchenko Taras Shevchenko National University of Kyiv, Physics Department
  • V. V. Kozachenko Taras Shevchenko National University of Kyiv, Physics Department
  • A. V. Tomchuk Taras Shevchenko National University of Kyiv, Physics Department

DOI:

https://doi.org/10.15407/ujpe63.5.386

Анотація

Подвiйний поверхневий плазмонний резонанс спостерiгався у спектрах поглинання наночастинок Ni у планарних наноструктурах “моношар наночастинок Ni/плiвка шелаку/плiвка Au (Ni)”. Залежностi iнтенсивностi, довжини хвилi та пiвширини плазмонних пiкiв поглинання наночастинок Ni, взаємодiючих з плiвкою Au (Ni), вiд товщини дiелектричного прошарку було дослiджено в дiапазонi товщин прошарку 12–43 нм. Основними особливостями цих залежностей є збiльшення iнтенсивностi, блакитний зсув та монотонна поведiнка пiвширини плазмонних пiкiв поглинання при зменшеннi товщини дiелектричного прошарку. Спостережуванi залежностi були iнтерпретованi як результат плазмонної взаємодiї моношару наночастинок Ni з металевою плiвкою та змiни дiелектричної проникностi середовища, оточуючого наночастинки Ni, що спричинена присутнiстю плiвки металу. Для наноструктури, що мiстить плiвку золота, спостерiгалися сильнiшi залежностi спектральних характеристик поверхневого плазмонного резонансу наночастинок Ni, нiж для наноструктури з плiвкою нiкелю. Цей ефект зумовлений сильнiшою взаємодiєю наночастинок Ni з плiвкою Au та сильнiшим впливом плiвки Au на дiелектричну проникнiсть середовища, оточуючого наночастинки Ni.

Посилання

<ol>
<li>E. Ozbay. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189 (2006).
<a href="https://doi.org/10.1126/science.1114849">https://doi.org/10.1126/science.1114849</a>
</li>
<li>W.L. Barnes, A. Dereux, T.W. Ebbesen. Surface plasmon subwavelength optics. Nature 424, 824 (2003).
<a href="https://doi.org/10.1038/nature01937">https://doi.org/10.1038/nature01937</a>
</li>
<li>M. I. Stockman. Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029 (2011).
<a href="https://doi.org/10.1364/OE.19.022029">https://doi.org/10.1364/OE.19.022029</a>
</li>
<li>P. Bermel, M. Ghebrebrhan, W. Chan, Y.X. Yeng, M. Araghchini, R. Hamam, C.H. Marton, K.F. Jensen, M. Soljaci?c, J.D. Joannopoulos, S.G. Johnson, I. Celanovic. Design and global optimization of high-efficiency thermophotovoltaic systems. Opt. Express 18, A314 (2010).
<a href="https://doi.org/10.1364/OE.18.00A314">https://doi.org/10.1364/OE.18.00A314</a>
</li>
<li>J. Hao, J. Wang, X. Liu, W.J. Padilla, L. Zhou, M. Qiu. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251104 (2010).
<a href="https://doi.org/10.1063/1.3442904">https://doi.org/10.1063/1.3442904</a>
</li>
<li>F. Niesler, J. Gansel, S. Fischbach, M. Wegener. Metamaterial metal-based bolometers. Appl. Phys. Lett. 100, 203508 (2012).
<a href="https://doi.org/10.1063/1.4714741">https://doi.org/10.1063/1.4714741</a>
</li>
<li>L. Baldassarre, V. Giliberti, A. Rosa, M. Ortolani, A. Bonamore, P. Baiocco, K. Kjoller, P. Calvani, A. Nucara. Mapping the amide I absorption in single bacteria and mammalian cells with resonant infrared nanospectroscopy. Nanotechnology 27, 075101 (2016).
<a href="https://doi.org/10.1088/0957-4484/27/7/075101">https://doi.org/10.1088/0957-4484/27/7/075101</a>
</li>
<li>N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).
<a href="https://doi.org/10.1103/PhysRevLett.100.207402">https://doi.org/10.1103/PhysRevLett.100.207402</a>
</li>
<li>Y. Avitzour, Y.A. Urzhumov, G. Shvets. Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Phys. Rev. B 79, 045131 (2009).
<a href="https://doi.org/10.1103/PhysRevB.79.045131">https://doi.org/10.1103/PhysRevB.79.045131</a>
</li>
<li> N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342 (2010).
<a href="https://doi.org/10.1021/nl9041033">https://doi.org/10.1021/nl9041033</a>
</li>
<li> C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, R. Haпdar. Total routing and absorption of photons in dual color plasmonic antennas. Appl. Phys. Lett. 99, 241104 (2011).
<a href="https://doi.org/10.1063/1.3670051">https://doi.org/10.1063/1.3670051</a>
</li>
<li> C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy. Large-area wide-angle spectrally selective plasmonic absorber. Phys. Rev. B 84, 075102 (2011).
<a href="https://doi.org/10.1103/PhysRevB.84.075102">https://doi.org/10.1103/PhysRevB.84.075102</a>
</li>
<li> A. Tittl, P. Mai, R. Taubert, D. Dregely, N.L.H. Giessen. Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano Lett. 11, 4366 (2011).
<a href="https://doi.org/10.1021/nl202489g">https://doi.org/10.1021/nl202489g</a>
</li>
<li> E. Prodan, C. Radloff, N. J. Halas, P. Nordlander. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419 (2003).
<a href="https://doi.org/10.1126/science.1089171">https://doi.org/10.1126/science.1089171</a>
</li>
<li> O.A. Yeshchenko, I. Bondarchuk, S. Malynych, Yu. Galabura, G. Chumanov, I. Luzinov. Surface plasmon modes of sandwich-like metal–dielectric nanostructures. Plasmonics 10, 655 (2015).
<a href="https://doi.org/10.1007/s11468-014-9851-8">https://doi.org/10.1007/s11468-014-9851-8</a>
</li>
<li> V.V. Kravets, O.A. Yeshchenko, V.V. Gozhenko, L.E. Ocola, D.A. Smith, J.V. Vedral, A.O. Pinchuk. Electrodynamic coupling in regular arrays of gold nanocylinders. J. Phys. D 45, 045102 (2012).
<a href="https://doi.org/10.1088/0022-3727/45/4/045102">https://doi.org/10.1088/0022-3727/45/4/045102</a>
</li>
<li> M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A.P. Alivisatos, N. Liu. Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 10, 2721 (2010).
<a href="https://doi.org/10.1021/nl101938p">https://doi.org/10.1021/nl101938p</a>
</li>
<li> M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. K?urzinger, T.A. Klar, J. Feldmann. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 100, 203002 (2008).
<a href="https://doi.org/10.1103/PhysRevLett.100.203002">https://doi.org/10.1103/PhysRevLett.100.203002</a>
</li>
<li> A. Moreau, C. Cirac`?, J.J. Mock, R.T. Hill, Q. Wang, B.J. Wiley, A. Chilkoti, D.R. Smith. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492, 86 (2012).
<a href="https://doi.org/10.1038/nature11615">https://doi.org/10.1038/nature11615</a>
</li>
<li> J.J. Mock, R.T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, D.R. Smith. Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett. 8, 2245 (2008).
<a href="https://doi.org/10.1021/nl080872f">https://doi.org/10.1021/nl080872f</a>
</li>
<li> C. Cirac`?, R.T. Hill, J.J. Mock, Y. Urzhumov, A.I. Fern’andez-Dom’?nguez, S.A. Maier, J.B. Pendry, A. Chilkoti, D.R. Smith. Probing the ultimate limits of plasmonic enhancement. Science 337, 1072 (2012).
<a href="https://doi.org/10.1126/science.1224823">https://doi.org/10.1126/science.1224823</a>
</li>
<li> A. Sobhani, A. Manjavacas, Y. Cao, M.J. McClain, F.J. Garc’?a de Abajo, P. Nordlander, N. J. Halas. Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film. Nano Lett. 15, 6946 (2015).
<a href="https://doi.org/10.1021/acs.nanolett.5b02883">https://doi.org/10.1021/acs.nanolett.5b02883</a>
</li>
<li> O.A. Yeshchenko, V.V. Kozachenko, Yu.F. Liakhov, A.V. Tomchuk, M. Haftel, A.O. Pinchuk. Gold nanoparticle plasmon resonance in near-field coupled Au NPs layer/Al film nanostructure: dependence on metal film thickness. Mater. Res. Express 4, 106401 (2017).
<a href="https://doi.org/10.1088/2053-1591/aa8c3a">https://doi.org/10.1088/2053-1591/aa8c3a</a>
</li>
<li> A. Pinchuk, A. Hilger, G. von Plessen, U. Kreibig. Substrate effect on the optical response of silver nanoparticles. Nanotechnology 15 1890 (2004).
<a href="https://doi.org/10.1088/0957-4484/15/12/036">https://doi.org/10.1088/0957-4484/15/12/036</a>
</li>
<li> N. Papanikolaou. Optical properties of metallic nanoparticle arrays on a thin metallic film. Phys. Rev. B 75, 235426 (2007).
<a href="https://doi.org/10.1103/PhysRevB.75.235426">https://doi.org/10.1103/PhysRevB.75.235426</a>
</li>
<li> P. Nordlander, F. Le. Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system. Appl. Phys. B 84, 35 (2006).
<a href="https://doi.org/10.1007/s00340-006-2203-4">https://doi.org/10.1007/s00340-006-2203-4</a>
</li>
<li> F. Le, N.Z. Lwin, J.M. Steele, M. Kall, N.J. Halas, P. Nordlander. Plasmons in the metallic nanoparticle-film system as a tunable impurity problem. Nano Lett. 5, 2009 (2005).
<a href="https://doi.org/10.1021/nl0515100">https://doi.org/10.1021/nl0515100</a>
</li>
<li> N. Nedyalkov, T. Sakai, T. Miyanishi, M. Obara. Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate. Appl. Phys. Lett. 90, 123106 (2007).
<a href="https://doi.org/10.1063/1.2715103">https://doi.org/10.1063/1.2715103</a>
</li>
<li> G. Leveque, O.J.F. Martin. Optical interactions in a plasmonic particle coupled to a metallic film. Opt. Express 14, 9971 (2006).
<a href="https://doi.org/10.1364/OE.14.009971">https://doi.org/10.1364/OE.14.009971</a>
</li>
<li> S.K. Eah, H.M. Jaeger, N.F. Scherer, G.P. Wiederrecht, X.M. Lin. Scattered light interference from a single metal nanoparticle and its mirror image. J. Phys. Chem. B 109, 11858 (2005).
<a href="https://doi.org/10.1021/jp0511395">https://doi.org/10.1021/jp0511395</a>
</li>
<li> W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, H. Cao. Time-reversed lasing and interferometric control of absorption. Science 331, 889 (2011).
<a href="https://doi.org/10.1126/science.1200735">https://doi.org/10.1126/science.1200735</a>
</li>
<li> O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, A.M. Dmytruk. Optical properties of sol–gel fabricated Ni/SiO2 glass nanocomposites. J. Phys. Chem. Solids 69, 1615 (2008).
<a href="https://doi.org/10.1016/j.jpcs.2007.12.002">https://doi.org/10.1016/j.jpcs.2007.12.002</a>
</li>
<li> S. Roy, D. Das, C. Chakravorty, D.C. Agrawal. Magnetic properties of glass–metal nanocomposites prepared by the sol–gel route and hot pressing. J. Appl. Phys. 74, 4746 (1993).
<a href="https://doi.org/10.1063/1.354344">https://doi.org/10.1063/1.354344</a>
</li>
<li> L. N’arvaez, O. Dom’?nguez, J.R. Mart’?nez, F. Ruiz. Preparation of (Ni-B)/SiO2, Ni/SiO2 and NiO/SiO2 nanocomposites. J. Non-Cryst. Solids 318, 37 (2003).
<a href="https://doi.org/10.1016/S0022-3093(02)01877-X">https://doi.org/10.1016/S0022-3093(02)01877-X</a>
</li>
<li> M.A. Ermakova, D.Yu. Ermakov, S.V. Cherepanova, L.M. Plyasova. Synthesis of ultradispersed nickel particles by reduction of high-loaded NiO–SiO2 systems prepared by heterophase sol-gel method. J. Phys. Chem. B 106, 11922 (2002).
<a href="https://doi.org/10.1021/jp021231q">https://doi.org/10.1021/jp021231q</a>
</li>
<li> K. Takeuchi, T. Isobe, M. Senna. Effects of mechanical pretreatment of precursor sols and gels on the formation of NiO/SiO2 composites with a controlled microstructure. J. Non-Cryst. Solids 194, 58 (1996).
<a href="https://doi.org/10.1016/0022-3093(95)00461-0">https://doi.org/10.1016/0022-3093(95)00461-0</a>
</li>
<li> J. Hern’andez-Torres, A. Mendoza-Galv’an. Optical properties of sol-gel SiO2films containing Nickel. Thin Solid Films 472, 130 (2005).
<a href="https://doi.org/10.1016/j.tsf.2004.06.132">https://doi.org/10.1016/j.tsf.2004.06.132</a>
</li>
<li> N. Cordente, M. Respaud, F. Senocq, M.-J. Casanove, C. Amiens, B. Chaudret. Synthesis and Magnetic Properties of Nickel Nanorods. Nano Lett. 1, 565 (2001).
<a href="https://doi.org/10.1021/nl0100522">https://doi.org/10.1021/nl0100522</a>
</li>
<li> C. Estournes, T. Lutz, T. Happich, T. Quaranta, P. Wissler, J.L. Guille. Nickel nanoparticles in silica gel: Preparation and magnetic properties. J. Magn. Magn. Mater. 173, 83 (1997).
<a href="https://doi.org/10.1016/S0304-8853(97)00144-3">https://doi.org/10.1016/S0304-8853(97)00144-3</a>
</li>
<li> J. Jiao, S. Seraphin, X. Wang, J.C. Withers. Preparation and properties of ferromagnetic carboncoated Fe, Co, and Ni nanoparticles. J. Appl. Phys. 80, 103 (1996).
<a href="https://doi.org/10.1063/1.362765">https://doi.org/10.1063/1.362765</a>
</li>
<li> F.C. Fonseca, G.F. Goya, R.F. Jardim, R. Muccillo, N.L.V. Carre?no, E. Longo, E.R. Leite. Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO2. Phys. Rev. B 66, 104406 (2002).
<a href="https://doi.org/10.1103/PhysRevB.66.104406">https://doi.org/10.1103/PhysRevB.66.104406</a>
</li>
<li> B.G. Ershov. Aqueous solutions of colloidal nickel: Radiation-chemical preparation, absorption spectra, and properties. Russian Chemical Bulletin 49, 1715 (2000).
<a href="https://doi.org/10.1007/BF02496340">https://doi.org/10.1007/BF02496340</a>
</li>
<li> H. Amekura, Y. Takeda, H. Kitazawa, N. Kishimoto. Modification of metal nanoparticles in SiO2 by thermal oxidation. SPIE Proc. 4977, 639 (2003).
</li>
<li> T. Isobe, S.Y. Park, R.A. Weeks, R.A. Zhur. The optical and magnetic properties of Ni+-implanted silica. J. Non-Cryst. Solids 189, 173 (1995).
<a href="https://doi.org/10.1016/0022-3093(95)00230-8">https://doi.org/10.1016/0022-3093(95)00230-8</a>
</li>
<li> O. C’?ntora-Gonz’alez, C. Estourn`es, D. Muller, J. Guille, J.J. Grob.Magnetic behavior of Ni+ implanted silica. Nucl. Instr. Meth. B 147, 422 (1999).
<a href="https://doi.org/10.1016/S0168-583X(98)00579-5">https://doi.org/10.1016/S0168-583X(98)00579-5</a>
</li>
<li> H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, S. Mantl. Dual surface plasmon resonances in Zn nanoparticles in SiO2: An experimental study based on optical absorption and thermal stability. Nanotechnology 18, 395707 (2007).
<a href="https://doi.org/10.1088/0957-4484/18/39/395707">https://doi.org/10.1088/0957-4484/18/39/395707</a>
</li>
<li> P.B. Johnson, R.W. Christy. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B 9, 5056 (1974).
<a href="https://doi.org/10.1103/PhysRevB.9.5056">https://doi.org/10.1103/PhysRevB.9.5056</a></li>

Downloads

Опубліковано

2018-07-03

Як цитувати

Yeshchenko, O. A., Kozachenko, V. V., & Tomchuk, A. V. (2018). Поверхневий плазмонний резонанс у наноструктурі “моношар наночастинок Ni/діелектричний прошарок/плівка Au (Ni)”: Зміна шляхом варіації товщини діелектричного прошарку. Український фізичний журнал, 63(5), 386. https://doi.org/10.15407/ujpe63.5.386

Номер

Розділ

Фізика поверхні