Determination of the Surface Tension Coefficient of Polymer Gel

Authors

  • Yu.F. Zabashta Taras Shevchenko National University of Kyiv, Faculty of Physics
  • V.I. Kovalchuk Taras Shevchenko National University of Kyiv, Faculty of Physics
  • O.S. Svechnikova Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L.A. Bulavin Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe67.5.365

Keywords:

hydroxypropyl cellulose, phase transition, ions, surface tension

Abstract

A method for determining the surface tension coefficient at the sol-gel phase interface in the polymer solution is proposed. The required value is calculated on the basis of the temperature dependence of the gel phase volume fraction formed during the sol-gel transition. The method has been tested using the hydroxypropyl cellulose aqueous solution. In particular, the gel phase volume fraction is determined by measuring the temperature dependence of the solution turbidity. Using the proposed method, it is found that the surface tension coefficient of the examined solution decreases, if ions of group-I alkali metals (Li, Na, and K chlorides) are introduced, which agrees with the classical theory of electrocapillary phenomena in solutions.

References

P.-G. Gennes. Scaling Concepts in Polymer Physics (Cornell University Press, 1979) [ISBN: 978-0801412035].

H.-G. Elias. Mega Molecules (Springer, 1987) [ISBN: 978-3540175414].

https://doi.org/10.1007/978-3-642-71900-4

R.A.L. Jones. Soft Condensed Matter (Oxford University Press, 2002) [ISBN: 978-0198505891].

K. Kamide. Cellulose and Cellulose Derivatives (Elsevier Science, 2005) [ISBN: 978-0080454443].

P.T. Anastas, J.C. Warner. Green Chemistry: Theory and Practice (Oxford University Press, 1998) [ISBN: 978-0198506980].

B.E. Paton, L.A. Bulavin, O.Yu. Aktan, Yu.F. Zabashta, O.V. Lebedev, S.E. Podpryatov, A.G. Dubko, O.M. Ivanova. Structural transformations of collagen at the electrowelding of soft biological tissues. Dopov. Nats. Akad. Nauk Ukr. 2, 94 (2010) (in Ukrainian).

B. Furie, B.C. Furie. Molecular and cellular biology of blood coagulation. N. Engl. J. Med. 326, 800 (1992).

https://doi.org/10.1056/NEJM199203193261205

E. Cal'o, V.V. Khutoryanskiy. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 65, 252 (2014).

https://doi.org/10.1016/j.eurpolymj.2014.11.024

A.W. Lloyd, R.G. Faragher, S.P. Denyer. Ocular biomaterials and implants. Biomaterials 22, 769 (2001).

https://doi.org/10.1016/S0142-9612(00)00237-4

B.H. Koffler, M. McDonald, D.S. Nelinson. Improved signs, symptoms, and quality of life associated with dry eye syndrome: Hydroxypropyl cellulose ophthalmic insert patient registry. Eye Contact Lens 36, 170 (2010).

https://doi.org/10.1097/ICL.0b013e3181db352f

K.G. Harding, H.L. Morris, G.K. Patel. Science, medicine and the future: healing chronic wounds. BMJ 324, 160 (2002).

https://doi.org/10.1136/bmj.324.7330.160

V. Jones, J.E. Grey, K.G. Harding. Wound dressings. BMJ 332, 777 (2006).

https://doi.org/10.1136/bmj.332.7544.777

J.L. Drury, D.J. Mooney. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 24, 4337 (2003).

https://doi.org/10.1016/S0142-9612(03)00340-5

J.A. Hunt, R. Chen, T. van Veena, N. Bryana. Hydrogels for tissue engineering and regenerative medicine. J. Mater. Chem. B 2, 5319 (2014).

https://doi.org/10.1039/C4TB00775A

Fundamentals and Applications of Controlled Release Drug Delivery. Edited by J. Siepmann, R. Siegel, M. Rathbone (Springer, 2012) [ISBN: 978-1461408802].

M.L. Weiner, L.A. Kotkoskie. Excipient Toxicity and Safety (CRC Press, 2019) [ISBN: 978-0824782108].

Yu.F. Zabashta, V.I. Kovalchuk, L.A. Bulavin. Kinetics of the first-order phase transition in a varying temperature field. Ukr. J. Phys. 66, 978 (2021).

https://doi.org/10.15407/ujpe66.11.978

B.B. Mandelbrot. The Fractal Geometry of Nature (Times Books, 1982) [ISBN: 978-0716711865].

Hydroxypropyl Cellulose [https://www.alfa.com/en/catalog/043400/].

O.M. Alekseev, Yu.F. Zabashta, V.I. Kovalchuk, M.M. Lazarenko, L.A. Bulavin. The structure of polymer clusters in aqueous solutions of hydroxypropylcellulose. Ukr. J. Phys. 64, 238 (2019).

https://doi.org/10.15407/ujpe64.3.238

O.M. Alekseev, Yu.F. Zabashta, V.I. Kovalchuk, M.M. Lazarenko, E.G. Rudnikov, L.A. Bulavin. Structural transition in dilute solutions of rod-like macromolecules. Ukr. J. Phys. 65, 50 (2020).

https://doi.org/10.15407/ujpe65.1.50

V.I. Kovalchuk. Phase separation dynamics in aqueous solutions of thermoresponsive polymers. Cond. Matt. Phys. 24, 43601 (2021).

https://doi.org/10.5488/CMP.24.43601

J. Frenkel. Kinetic Theory of Liquids (Dover Publications, 1955).

J.O'M. Bockris, A.K.N. Reddy. Modern Electrochemistry (Springer Science, 2001) [ISBN: 978-0306463242].

Published

2022-08-29

How to Cite

Zabashta, Y., Kovalchuk, V., Svechnikova, O., & Bulavin, L. (2022). Determination of the Surface Tension Coefficient of Polymer Gel. Ukrainian Journal of Physics, 67(5), 365. https://doi.org/10.15407/ujpe67.5.365

Issue

Section

Liquid crystals and polymers

Most read articles by the same author(s)

<< < 1 2 3 4 5