Microstructural, Rheological, and Conductometric Studies of Multiwalled Carbon Nanotube Suspensions in Glycerol

Authors

  • L.A. Bulavin Taras Shevchenko National University of Kyiv, Faculty of Physics
  • N.I. Lebovka F.D. Ovcharenko Institute of Biocolloid Chemistry, Nat. Acad. of Sci. of Ukraine
  • Yu.A. Kyslyi Taras Shevchenko National University of Kyiv, Faculty of Physics
  • S.V. Khrapatyi Taras Shevchenko National University of Kyiv, Faculty of Physics
  • A.I. Goncharuk F.D. Ovcharenko Institute of Biocolloid Chemistry, Nat. Acad. of Sci. of Ukraine
  • I.A. Mel’nyk Taras Shevchenko National University of Kyiv, Faculty of Physics
  • V.I. Koval’chuk Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe56.3.217

Keywords:

-

Abstract

Optical microscopy studies of electrical conductivity and rheological properties (in the cone-plate geometry) of glycerol suspensions filled with multiwalled carbon nanotubes (MWCNTs) have been fulfilled. The researches were carried out in the intervals of temperature T = 283–333 K and MWCNT concentration C = 0–1 wt%. MWCNTs in glycerol are demonstrated to have a strong tendency toward the aggregation, so that "primary" MWCNT  aggregates persist even after the intensive ultrasound homogenization. Typical percolation phenomena accompanied by an enhancement of the electrical conductivity and the viscosity are observed at an increase of the MWCNT concentration. The concentration percolation threshold is identified at C = Cp0.1 wt%, and the scaling behavior in a vicinity of the percolation threshold is found to be characterized by the conductivity exponent t = 2.7 ± 0.3, which is somewhat higher than a value typical of the random percolation problem. The introduction of MWCNTs in glycerol resulted in the appearance of thixotropic behavior related to the fracture of MWCNT aggregates under shear. An anomalous rheological behavior is observed at a high MWCNT concentration, C = 1 wt%, which testifies to the destruction of the H-bond network in glycerol induced by MWCNTs. The dependences of the activation energies of the ionic electric conductivity and a viscous flow on the MWCNT concentration are estimated.

References

P.J.F. Harris, Carbon Nanotubes and Related Structures. New Materials for the Twenty-First Century (Cambridge Univ. Press, Cambridge, 2000).

https://doi.org/10.1017/CBO9780511605819

Y. Lin, S. Taylor, H. Li, K.A.S. Fernando, L. Qu, W. Wang, L. Gu, B. Zhou, and Y-P. Sun, J. Mater. Chem. 14, 527 (2004).

https://doi.org/10.1039/b314481j

M.J. Solomon and P.T. Spicer, Soft Matter 6, 1391 (2010).

https://doi.org/10.1039/b918281k

M.O. Lisunova, N.I. Lebovka, O.V. Melezhyk, and Yu.P. Boiko, J. Coll. Interface Sci. 299, 740 (2006).

https://doi.org/10.1016/j.jcis.2006.03.012

L. Liu, Y. Yang, and Y. Zhang, Physica E 24, 343 (2004).

https://doi.org/10.1016/j.physe.2004.06.046

L. Lysetskiy, V. Panikarskaya, O. Sidletskiy, N. Kasian, S. Kositsyn, P. Shtifanyuk, N. Lebovka, M. Lisunova, and O. Melezhyk, Mol. Cryst. Liq. Cryst. 478, 127 (2007).

https://doi.org/10.1080/15421400701681315

L.N. Lisetski, S.S. Minenko, A.P. Fedoryako, and N.I. Lebovka, Physica E 41, 431 (2009).

https://doi.org/10.1016/j.physe.2008.09.004

L.N. Lisetski, S.S. Minenko, A.V. Zhukov, P.P. Shtifanyuk, and N.I. Lebovka, Mol. Cryst. Liq. Cryst. 510, 43 (2009).

https://doi.org/10.1080/15421400903058056

L.N. Lisetski, S.S. Minenko, V.V. Ponevchinsky, M.S. Soskin, A.I. Goncharuk, and N.I. Lebovka, Mater. Sci. Eng. Techn. (to be published).

N. Lebovka, T. Dadakova, L. Lysetskiy, O. Melezhyk, G. Puchkovska, T. Gavrilko, J. Baran, and M. Drozd, J. Mol. Struct. 877, 135 (2008).

https://doi.org/10.1016/j.molstruc.2007.12.038

N.I. Lebovka, A. Goncharuk, V.I. Melnyk, and G.A. Puchkovska, Physica E 41, 1554 (2009).

https://doi.org/10.1016/j.physe.2009.04.038

L. Dolgov, O. Yaroshchuk, and M. Lebovka, Mol. Cryst. Liq. Cryst. 496, 212 (2008).

https://doi.org/10.1080/15421400802451816

L.A. Dolgov, N.I. Lebovka, and O.V. Yaroshchuk, Colloid J. 71, 603 (2009).

https://doi.org/10.1134/S1061933X09050044

L. Dolgov, O. Kovalchuk, N. Lebovka, S. Tomylko, and O. Yaroshchuk, in Carbon Nanotubes, edited by J.M. Marulanda (In-Tech, Vukovar, Croatia, 2010), p. 451.

A.I. Goncharuk, N.I. Lebovka, L.N. Lisetski, and S.S. Minenko, J. Phys. D: Appl. Phys. 42, 165411 (2009).

https://doi.org/10.1088/0022-3727/42/16/165411

V.V. Ponevchinsky, A.I. Goncharuk, V.I. Vasil'ev, N.I. Lebovka, and M. S. Soskin, Proc. SPIE 7388, 738802 (2009).

V.V. Ponevchinsky, A.I. Goncharuk, V.I. Vasil'ev, N.I. Lebovka, and M.S. Soskin, Proc. SPIE 7613, 761306 (2010).

V.V. Ponevchinsky, A.I. Goncharuk, V.I. Vasil'ev, N.I. Lebovka, and M.S. Soskin, JETP Letters 91, 241 (2010).

https://doi.org/10.1134/S0021364010050085

V.N. Ponevchinsky, A.I. Goncharuk, S.V. Naydenov, L.N. Lisetski, N.I. Lebovka, and M.S. Soskin, Proc. SPIE (to be published).

N.I. Lebovka, E.A. Lysenkov, A.I. Goncharuk, Yu.P. Gomza, V.V. Klepko, and Yu.P. Boiko, J. Compos. Mater. (to be published).

D. Bergin, Z. Sun, P. Streich, J. Hamilton, and J.N. Coleman, J. Phys. Chem. C 114, 231 (2010).

https://doi.org/10.1021/jp908923m

M. Pagliaro and M. Rossi, Future of Glycerol (Royal Society of Chemistry, London, 2010).

G. Salahas, Y. Manetas, and N.A. Gavalas, Photosynthesis Res. 26, 9 (1990).

J.A. Rojas-Chapana, M.A. Correa-Duarte, Z. Ren, K. Kempa, and M. Giersig, Nano Lett. 4, 985 (2004).

https://doi.org/10.1021/nl049699n

V. Raffa, G. Ciofani, and A. Cuschieri, Nanotechnology 20, 075104 (2009).

https://doi.org/10.1088/0957-4484/20/7/075104

V. Raffa, G. Ciofani, O. Vittorio, V. Pensabene, and A. Cuschieri, Bioelectrochemistry 79, 136 (2010).

https://doi.org/10.1016/j.bioelechem.2009.10.006

Electrotechnologies for Extraction from Food Plants and Biomaterials, edited by E. Vorobiev and N. Lebovka (Springer, New York, 2008).

N. Lebovka and E. Vorobiev, in Advanced Electroporation Techniques in Biology and Medicine, edited by A. G. Pakhomov, D. Miklavcic, and M. S. Markov (CRC Press, New York, 2010), p. 463.

J. Suehiro, N. Ikeda, A. Ohtsubo, and K. Imasaka, Microfluidics and Nanofluidics 5, 741 (2008).

https://doi.org/10.1007/s10404-008-0276-6

D. Cai, D. Blai, F.J. Dufort, M.R. Gumina, Z. Huang, G. Hong, D. Wagner, D. Canahan, K. Kempa, Z.F. Ren, and T.C. Chiles, Nanotechnology 19, 345102 (2008).

https://doi.org/10.1088/0957-4484/19/34/345102

J.D. Yantzi and J.T.W. Yeow, Mechatronics and Automation, IEEE International Conference 4, 1872 (2005).

H. Yu, Y. Qu, Z. Dong, W.J. Li, Y. Wang, W. Ren, and Z. Cui, in Proceedings of the 7th IEEE International Conference on Nanotechnology IEEE-NANO 2007 (2007), p. 1212.

A.V. Melezhyk, Yu.I. Sementsov, and V. V. Yanchenko, Zh. Prikl. Khim. 78, 938 (2005).

Q. Cheng, S. Debnath, E. Gregan, and H.J. Byrne, J. Phys. Chem. C 114, 8821 (2010).

https://doi.org/10.1021/jp101431h

P.N. Shankar and M. Kumar, Proc. R. Soc. A 444, 573 (1994).

https://doi.org/10.1098/rspa.1994.0039

S.V. Lishchuk and N.P. Malomuzh, Chem. Phys. Lett. 309, 307 (1999).

https://doi.org/10.1016/S0009-2614(99)00654-5

I.V. Blazhnov, N.P. Malomuzh, and S.V. Lishchuk, J. Chem. Phys. 121, 6435 (2004).

https://doi.org/10.1063/1.1789474

S. Magazu, F. Migliardo, N.P. Malomuzh, and I.V. Blazhnov, J. Phys. Chem. B 111, 9563 (2007).

https://doi.org/10.1021/jp071949b

D. Stauffer and D. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1994).

A.M. Elias and M.E. Elias, J. Chem. Eng. Data 37, 451 (1992).

https://doi.org/10.1021/je00008a017

Published

2022-02-15

How to Cite

Bulavin Л., Lebovka М., Kyslyi Ю., Khrapatyi С., Goncharuk А., Mel’nyk І., & Koval’chuk В. (2022). Microstructural, Rheological, and Conductometric Studies of Multiwalled Carbon Nanotube Suspensions in Glycerol. Ukrainian Journal of Physics, 56(3), 217. https://doi.org/10.15407/ujpe56.3.217

Issue

Section

Soft matter