Density and Surface Tension of Sn1–xBix Melts

Authors

  • R. Bilyk Ivan Franko National University of Lviv
  • S. Mudry Ivan Franko National University of Lviv
  • R. Ovsianyk Ivan Franko National University of Lviv
  • I. Borukh Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine
  • A. Kmet Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine
  • L. Muravsky Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.15407/ujpe65.11.1017

Keywords:

surface tension, density, eutectic melts

Abstract

The surface tension and the density of the Sn1−xBix system with Bi concentrations of 5, 10, and 15 at% have been studied using the lying drop method in a temperature interval of 470–800 K and under a vacuum of 10 Pa. The DROP program is used to obtain experimental values of the studied physical quantities. The addition of bismuth to tin was found to decrease the surface energy of the Sn1−xBix melts. It is also shown that there are linear temperature dependences for the surface tension coefficient and the density of the studied system.

References

S. Ono, S. Kondo. Molecular Theory of Surface Tension in Liquids (Springer, 1960). https://doi.org/10.1007/978-3-662-25003-7_2

V.I. Nizhenko, L.I. Floka. Surface Tension of Liquid Metals and Alloys (Metallurgy, 1981) (in Russian).

A.I. Rusanov. Phase Equilibria and Surface Phenomena (Khimiya, Leningrad, 1967) (in Russian).

Won-Kyu Rhim, K Ohsaka, P.-F. Paradis, R.E. Spjut. Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation. Rev. Sci. Instrum. 70, 2796 (1999). https://doi.org/10.1063/1.1149797

Y. Tian, R. Holt, R. Apfel. A new method for measuring liquid surface tension with acoustic levitation. Rev. Sci. Instrum. 66, 3349 (1995).

H. Fujii, T. Matsumoto, K. Nogi, N. Hata, T. Nakano. M. Kohno. Surface tension of molten silicon measured by the electromagnetic levitation method under microgravity. Metall. Mater. Trans. 31, 1585 (2000). https://doi.org/10.1007/s11661-000-0168-1

S. I. Popel, Yu. I. Maslennikov. Structure of eutectic Bi-Sn, Bi-In, and Ga-Sn alloys studied by electron diffraction. Zh. Fiz. Khim. 51, 816 (1977) (in Russian).

I.I. Shtablavyji, S.I. Mudry, U.I. Liudkevych. The transformation of the structure at heating and mechanism of thermal expansion of Sn-Bi eutectic alloy. Phys. Chem. Solid State 18, 198 (2017). https://doi.org/10.15330/pcss.18.2.198-205

N. A. Asryan, A. Mikula. Thermodynamic properties of Bi-Sn melts. Inorg. Mater. 40, 386 (2004). https://doi.org/10.1023/B:INMA.0000023961.34926.67

Z. Moser, W. Gasior, J. Pstrus. Surface tension measurements of the Bi-Sn and Sn-Bi-Ag liquid alloys. J. Electron. Mater. 30, 1104 (2001). https://doi.org/10.1007/s11664-001-0136-6

J. Li, Zh. Yuan, Zh. Qiao, J. Fan, Y. Xu, J. Ke. Measurement and calculation of surface tension of molten Sn-Bi alloy. J. Colloid Interf. Sci. 297, 3349 (1995).

L.I. Muravskyi, R.S. Bachevskyi, T.I. Voronyak. Experience of using optical-digital systems to measure the capillary characteristics of materials. Fiz. Khim. Mekh. Mater. 5, 81 (1997) (in Ukrainian). https://doi.org/10.1007/BF02537596

O.V. Lychak, V.B. Kmet', V.M. Pidzharyi. Application of polarizing contrast to determine the size of the contour of a lying drop of melt. Fiz. Khim. Mekh. Mater. 5, 88 (1997) (in Ukrainian).

P.V. Novitskii, I.A. Zograf. Evaluation of Errors of Measurement Results (Energoatomizdat, 1991) (in Russian).

Published

2020-11-12

How to Cite

Bilyk, R., Mudry, S., Ovsianyk, R., Borukh, I., Kmet, A., & Muravsky, L. (2020). Density and Surface Tension of Sn1–xBix Melts. Ukrainian Journal of Physics, 65(11), 1017. https://doi.org/10.15407/ujpe65.11.1017

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics