Bose–Einstein Condensation as a Deposition Phase Transition of Quantum Hard Spheres and New Relations between Bosonic and Fermionic Pressures

Authors

  • К.А. Bugaev Bogolyubov Institute for Theoretical Physics, Taras Shevchenko National University of Kyiv, Department of Physics
  • O.I. Ivanytskyi Bogolyubov Institute for Theoretical Physics, CFisUC, Department of Physics, University of Coimbra
  • B.E. Grinyuk Bogolyubov Institute for Theoretical Physics
  • I.P. Yakimenko Department of Physics, Chemistry and Biology (IFM), Link¨oping University

DOI:

https://doi.org/10.15407/ujpe65.11.963

Keywords:

quantum gases, Van der Waals, equation of state, statistical multifragmentation model, Bose–Einstein condensation, deposition phase transition

Abstract

We investigate the phase transition of Bose–Einstein particles with the hard-core repulsion in the grand canonical ensemble within the Van der Waals approximation. It is shown that the pressure of non-relativistic Bose–Einstein particles is mathematically equivalent to the pressure of simplified version of the statistical multifragmentation model of nuclei with the vanishing surface tension coefficient and the Fisher exponent тF = 5/2 , which for such parameters has the 1-st order phase transition. The found similarity of these equations of state allows us to show that within the present approach the high density phase of Bose-Einstein particles is a classical macro-cluster with vanishing entropy at any temperature which, similarly to the system of classical hard spheres, is a kind of solid state. To show this we establish new relations which allow us to identically represent the pressure of Fermi–Dirac particles in terms of pressures of Bose–Einstein particles of two sorts.

References

A. Isihara. Statistical Physics (Academic Press, 1971).

K. Huang. Statistical Mechanics (Wiley & Sons, 1967).

Yu.M. Poluektov. A simple model of Bose-Einstein condensation of interacting particles, J. Low Temp. Phys. 186, 347Р362 (2017) and references therein. https://doi.org/10.1007/s10909-016-1715-5

J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen. Statistical multifragmentation of nuclei. Phys. Rep. 257, 133 (1995). https://doi.org/10.1016/0370-1573(94)00097-M

S. Das Gupta, A.Z. Mekjian. Phase transition in a statistical model for nuclear multifragmentation. Phys. Rev. C 57, 1361 (1998). https://doi.org/10.1103/PhysRevC.57.1361

K.A. Bugaev, M.I. Gorenstein, I.N. Mishustin, W. Greiner. Exactly soluble model for nuclear liquid-gas phase transition. Phys. Rev. C 62 (2000) 044320. https://doi.org/10.1103/PhysRevC.62.044320

K.A. Bugaev, M.I. Gorenstein, I.N. Mishustin, W. Greiner. Statistical multifragmentation in thermodynamic limit. Phys. Lett. B 498 (2001) 144. https://doi.org/10.1016/S0370-2693(00)01374-5

K.A. Bugaev. Exact analytical solution of the constrained statistical multifragmentation model. Acta. Phys. Polon. B 36, 3083 (2005).

K.A. Bugaev, P.T. Reuter. Exactly solvable models: The road towards a rigorous treatment of phase transitions in finite nuclear systems. Ukr. J. Phys. 52, 489 (2007) and references therein.

V.V. Sagun, A.I. Ivanytskyi, K.A. Bugaev, I.N. Mishustin. The statistical multifragmentation model for liquid-gas phase transition with a compressible nuclear liquid. Nucl. Phys. A 924 (4), 24 (2014). https://doi.org/10.1016/j.nuclphysa.2013.12.012

J.P. Hansen, I.R. McDonald. Theory of Simple Fluids (Academic Press, 2006).

A. Mulero (editor). Theory and Simulation of Hard Sphere Fluids and Related Systems (Springer-Verlag, 2008). https://doi.org/10.1007/978-3-540-78767-9

V. Vovchenko, D.V. Anchishkin, M.I. Gorenstein. Van der Waals equation of state with Fermi statistics for nuclear matter. Phys. Rev. C 91, 064314 (2015). https://doi.org/10.1103/PhysRevC.91.064314

K. Redlich, K. Zalewski. Thermodynamics of Van der Waals Fluids with quantum statistics. Acta Phys. Polon. B 47, 1943 (2016). https://doi.org/10.5506/APhysPolB.47.1943

K.A. Bugaev. Self-consistent treatment of quantum gases of D-dimensional hard spheres beyond the Van der Waals approximation, Eur. Phys. J. A 55, 215 (2019). https://doi.org/10.1140/epja/i2019-12920-2

V.V. Sagun et al. Hadron resonance gas model with induced surface tension. Eur. Phys. J. A 54, 100 (2018) and references therein. https://doi.org/10.1140/epja/i2018-12535-1

K.A. Bugaev et al. Going beyond the second virial coefficient in the hadron resonance gas model. Nucl. Phys. A 970, 133 (2018) and references therein. https://doi.org/10.1016/j.nuclphysa.2017.11.008

K.A. Bugaev et. al. Hard-core radius of nucleons within the induced surface tension approach, Universe 5, 00063 (2019) and references therein. https://doi.org/10.3390/universe5020063

K.A. Bugaev et al. Second virial coefficients of light nuclear clusters and their chemical freeze-out in nuclear collisions. arXiv:2005.01555v1 [nucl-th] p. 1-13.

O.V. Vitiuk, K.A. Bugaev, E.S. Zherebtsova, D.B. Blaschke, L.V. Bravina, E.E. Zabrodin, G.M. Zinovjev. Resolution of hyper-triton chemical freeze-out puzzle in high energy nuclear collisions. arXiv:2007.07376 [hep-ph] (2020) p. 1-12.

M.E. Fisher. Theory of condensation and critical point. Physics 3, 255 (1967). https://doi.org/10.1103/PhysicsPhysiqueFizika.3.255

A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev. Integrals and Series (Gordon and Breach, 1986-1992).

S. Mallik, F. Gulminelli, G. Chaudhuri. Finite-size effects on the phase diagram of the thermodynamical cluster model, Phys. Rev. C 92, 064605 (2015). https://doi.org/10.1103/PhysRevC.92.064605

S. Das Gupta, S. Mallik, G. Chaudhuri. Further studies of the multiplicity derivative in models of heavy ion collision at intermediate energies as a probe for phase transitions. Phys. Rev. C 97, 044605 (2018). https://doi.org/10.1103/PhysRevC.97.044605

L.N. Cooper. Bound electron pairs in a degenerate Fermi gas. Phys. Rev. 104 (4), 1189 (1956). https://doi.org/10.1103/PhysRev.104.1189

Downloads

Published

2020-11-12

How to Cite

Bugaev К., Ivanytskyi, O., Grinyuk, B., & Yakimenko, I. (2020). Bose–Einstein Condensation as a Deposition Phase Transition of Quantum Hard Spheres and New Relations between Bosonic and Fermionic Pressures. Ukrainian Journal of Physics, 65(11), 963. https://doi.org/10.15407/ujpe65.11.963

Issue

Section

Fields and elementary particles