Electronic Structure and Stability of Magnesium Dihydride Phases

Authors

  • V.N. Uvarov G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. of Sci. of Ukraine
  • N.V. Uvarov G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. of Sci. of Ukraine
  • M.P. Melnik G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. of Sci. of Ukraine
  • M.V. Nemoshkalenko G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe67.9.663

Keywords:

band calculations, magnesium dioxide, polymorphism, electronic structure, phase stability

Abstract

With the help of band calculations in the framework of the full-potential linearized augmentedplane-wave model, information on the energy characteristics, the charge states of atoms, the nature of chemical bonds, the structure of valence bands, and the conductivity bands of polymorphous modifications of magnesium dihydride has been obtained. It is found that all magnesium dihydride phases are nonmagnetic insulators, with the electronic states of the metal and hydrogen atoms being hybridized within the whole energy interval of both the valence and conduction bands. It is shown that a reduction in the total charge of electrons in the interatomic region leads to a decrease in the cohesive energies of high-pressure magnesium dihydride phases, which are factors favoring the improvement of their hydrogen desorption kinetics.

References

L. Schlapbach, A.A. Zuttel. Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001).

https://doi.org/10.1038/35104634

V. N. Verbetsky, S.N. Klyamkin. Interaction of magnesium alloys with hydrogen. Hydrogen Energy Progress VII, 2, 1319 (1988).

M.M. Antonova. Magnesium Compounds - Hydrogen Accumulators. Preprint (1992) (in Russian).

J. Huot, G.Liang, R.Schulz. Mechanically alloyed metal hydride systems. Appl. Phys. A, 72, 187 (2001).

https://doi.org/10.1007/s003390100772

L. Schlapbach. Hydrogen in Intermetallic Compounds II (Springer, 1992).

https://doi.org/10.1007/3-540-54668-5

F.D. Manchester, D. Khatamian. Mechanisms for Activation of Intermetallic Hydrogen Absorbers. Mater. Sci. Forum 31, 261 (1988).

https://doi.org/10.4028/www.scientific.net/MSF.31.261

A. Zaluska, L. Zaluski, J.O. Strom-Olsen. Nanocrystalline magnesium for hydrogen storage. J. Alloys Compounds 288, 217 (1999).

https://doi.org/10.1016/S0925-8388(99)00073-0

A. Zaluska, L. Zaluski, J.O. Strom-Olsen. Structure, catalysis and atomic reactions on the nano-scale: A systematic approach to metal hydrides for hydrogen storage. Appl. Phys. A 72, 157 (2001).

https://doi.org/10.1007/s003390100783

R.A.H. Niessen, P.H.L. Notten. Electrochemical hydrogen storage characteristics of thin film MgX (X = Sc, Ti, V, Cr) compounds. Electrochem. Solid-State Lett. 8, A534 (2005).

https://doi.org/10.1149/1.2012238

R.A.H. Niessen, P.H.L. Notten. Hydrogen storage in thin film magnesiumпїЅscandium alloys. J. Alloys Compounds 404, 457 (2005).

https://doi.org/10.1016/j.jallcom.2004.09.096

P. Vermeulen, R.A.H. Niessen, P.H.L. Notten. Hydrogen storage in metastable MgyTi(1−y) thin films. Electrochem. Commun. 8, 27 (2006).

https://doi.org/10.1016/j.elecom.2005.10.013

T. Moriwaki, Y. Akahama, H. Kawamura et al. Structural phase transition of rutile-type MgH2 at high pressures. J. Phys. Soc. of Japan 75 (7), 074603 (2006).

https://doi.org/10.1143/JPSJ.75.074603

P. Vajeeston, P. Ravindran, B.C. Hauback et al. Structural stability and pressure-induced phase transitions in MgH2. Phys. Rev. B 73, 224102 (2006).

https://doi.org/10.1103/PhysRevB.73.224102

S. Er, M.J. van Setten, G.A. de Wijs, G. Brocks. Firstprinciples modelling of magnesium titanium hydrides. J. Phys.: Condens. Matter 22, 074208 (2010).

https://doi.org/10.1088/0953-8984/22/7/074208

J.P. Bastide, B. Bonnetot, J.M. Letoffe, P. Claudy. Polymorphisme de l'hydrure de magnesium sous haute pression. Mat. Res. Bull. 15, 1779 (1980).

https://doi.org/10.1016/0025-5408(80)90197-X

B. Bogdanovic, K. Bohmhammel, B. Christ et al. Thermodynamic investigation of the magnesiumпїЅhydrogen system. J. Alloys and Compounds 282, 84 (1999).

https://doi.org/10.1016/S0925-8388(98)00829-9

J. Isidorsson, I.A.M.E. Giebels, H. Arwin, R. Griessen. Optical properties of measured in situ by ellipsometry and spectrophotometry. Phys. Rev. B, 68, 115112 (2003).

https://doi.org/10.1103/PhysRevB.68.115112

S. Cui, W. Feng, H. Hu, Z. Feng et al. Structural phase transitions in MgH2 under high pressure. Solid State Communications 148, 403 (2008).

https://doi.org/10.1016/j.ssc.2008.09.033

D. Moser, D.J. Bull, T. Sato et al. Structure and stability of high pressure synthesized Mg-TM hydrides (TM = Ti, Zr, Hf, V, Nb and Ta) as possible new hydrogen rich hydrides for hydrogen storage. J. Mater. Chem. 19, 8150 (2009).

https://doi.org/10.1039/b911263d

D. Singh. Plane waves, psedopotentials and LAPW method (Kluwer Academic, 1994) [ISBN: 978-1-4757-2312-0].

J.P. Perdew, S. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

https://doi.org/10.1103/PhysRevLett.77.3865

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz. WIEN2k. An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Institute of Materials Chemistry, 2022) [ISBN: 3-9501031-1-2].

N.W. Ashcroft, N.D. Mermin. Solid State Physics (Saunders College Publishing, PA, 1976).

http://www.wien2k.at/reg_user/faq/

J.N. Murrell, S.F.A. Kettle, J.M. Tedder. Valence Theory (John Wiley and Sons, 1967).

http://femto.com.ua/articles/part_2/4446.html

Published

2022-12-21

How to Cite

Uvarov, V., Uvarov, N., Melnik, M., & Nemoshkalenko, M. (2022). Electronic Structure and Stability of Magnesium Dihydride Phases. Ukrainian Journal of Physics, 67(9), 663. https://doi.org/10.15407/ujpe67.9.663

Issue

Section

Semiconductors and dielectrics