Magnetic Hysteresis and Curie Temperature in Nickel-Chromium Ferrites Synthesized by Sol-Gel Auto-Combustion Method

  • V. S. Bushkova Vasyl Stefanyk Precarpathian National University
Keywords: ferrite, nanoparticle, coercivity, specific saturation magnetization, Curie temperature


Nanopowders of nickel-chromium ferrites with the general formula NiCrxFe2−xO4 are synthesized, by using the sol-gel auto-combustion method. Specimens of all ferrite compositions had a cubic spinel structure. The average size of powder crystallites varied from 23 to 43 nm. After the powders were pressed and sintered at a temperature of 1573 K, the average size of crystallites grew to 65–83 nm. The shape of a hysteresis loop (the low coercivity Hc) showed that the
specimens were soft magnetic materials. The residual magnetic field induction Br decreased with the growing concentration of Cr3+ ions due to the weakening of the interaction between the spinel sublattices, whereas Hc increased at that. The increase of the Cr3+ ion content in the ferrite specimens diminished the value of specific saturation magnetization qs from 33.9 to 7.7 A m2/kg, which testifies that less magnetic Cr3+ ions substitute Fe3+ ones in the ferrite octahedral sublattice. The magnetic moments calculated for the proposed cation distribution in the framework of the N´eel two-sublattice model turned out some lower than the experimentally measured values, which can be explained as a manifestation of the tilted spin effect and the influence of a surface layer 0.22–2.01 nm in thickness with a violated magnetic structure. As the temperature was lowered to 77 K, the magnetic parameters of the ferrite cores increased owing to their superparamagnetic properties. The Curie temperature decreased from 831 to 685 K with the growth of Cr content.


Ye.O. Chemes, Yu.S. Yampolskyi. Electrotechnical Devices of Radio-Electronic Facilities (Bakhva, 2014) (in Ukrainian).

V.O. Leontiev, S.V. Bevz, V.A. Vidmish. Electrotechnical Materials (VNTU, 2013) (in Ukrainian).

B.K. Ostafijchuk, V.S. Bushkova, V.V. Moklyak, R.V. Ilnitsky. Synthesis and magnetic microstructure of nanoparticles of zinc-substituted magnesium ferrites. Ukr. Fiz. Zh. 60, 1236 (2015) (in Ukrainian).

C.H. Cunningham, T. Arai, P.C. Yang, M.V. Connell, J.M. Pauly, S.M. Connolly. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn. Reson. Med. 53, 999 (2005).

N.E. Kazantseva, Y.I. Bespyatykh, I. Sapurina, J. Stejskal, J. Vilcakova, P. S’aha. Magnetic materials based on manganese-zinc ferrite with surface-organized polyaniline coating. J. Magn. Magn. Mater. 301, 155 (2006).

M. Patange, S.E. Shirsath, S.S. Jadhav, K.S. Lohar, D.R. Mane, K.M. Jadhav. Rietveld refinement and switching properties of Cr3+ substituted NiFe2O4 ferrites. Mater. Lett. 64, 722 (2010).

S. Mitra, M. Bidyananda, A. Kumar Samanta. Cation distribution in Cr-spinels from the Sittampundi layered complex and their intra-crystalline thermodynamics. Current Sci. 90, 435 (2006).

I.S. Ahmed Farag, M.A. Ahmed, S.M. Hammad, A.M. Moustafa. Study of cation distribution in Cu0.7(Zn0.3− Mg) Fe1.7Al0.3O4 by X-ray diffraction using Rietveld method. Egypt. J. Sol. 24, 215 (2001).

A.K. Ghatage, S.A. Patil, S.K. Paranjpe. Neutron diffraction study of chromium substituted nickel ferrite. Solid State Commun. 98, 885 (1996).

A. Rais, A.M. Gismelseed, I.A. Al-Omari. Cation distribution and magnetic properties of nickel–chromium ferrites NiCr Fe2− O4 (0 ≤ ≤ 1.4). Phys. Status Solidi B 242, 1497 (2005).

A.M. Gismelseed, A.A. Yousif. M¨ossbauer study of chromium-substituted nickel ferrites. Physica B 370, 215 (2005).

E.H. El-Ghazzawy, S.N. Alamri. NiCr Fe2− O4 ferrite nanoparticles and their composites with polypyrrole: Synthesis, characterization and magnetic properties. Bull. Mater. Sci. 38, 915 (2015).

A.C.F.M. Costa, D.A. Vieira, P. Sarubo-Junior, D.R. Cornejo, R.H.G.A. Kiminami. Avalia¸c˜ao de diferentes rotas de s’ıntese para prepara¸c˜ao de nanop’os de ferritas de n’ıquel dopadas com cromo. Rev. Electron. Mater. Process. 3, 40 (2008).

S.M. Patange, S.E. Shirsath, S.S. Jadhav, K.M. Jadhav. Cation distribution study of nanocrystalline NiFe2− Cr O4 ferrite by XRD, magnetization and M¨ossbauer spectroscopy. Phys. Status Solidi A 209, 347 (2012).

S.H. Lee, S.J. Yoon, G.J. Lee, H.S. Kim, Ch.H. Yo, K. Ahn, D.H. Lee, K.H. Kim. Electrical and magnetic properties of NiCr Fe2− O4 spinel (0 ≤ ≤ 0.6). Mater. Chem. Phys. 61, 147 (1999).

A. Baykal, A.Z. Elmal, M. Sertkol, H. Sozeri. Structural and magnetic properties of NiCr Fe2− O4 nanoparticles synthesized via microwave method. J. Supercond. Nov. Magn. 28, 3405 (2015).

V.S. Bushkova, I.P. Yaremiy, R.P. Lisovskiy, B.V. Karpyk. Structure and sorption characteristics of NiCr Fe2− O4 ferrite powders. J. Nano-Electron. Phys. 9, 02011 (2017).

S. Krupiˇcka. Physik der Ferrite und der Verwandten Magnetischen Oxide (Vieweg und Teubner, 1973).

K. Maaz, W. Khalid, A. Mumtaz, S.K. Hasanain, J. Liu, J.L. Duan. Magnetic characterization of Co1− Ni Fe2O4 (0 ≤ ≤ 1) nanoparticles prepared by co-precipitation route. Physica E 41, 593 (2009).

S.T. Alone, S.E. Shirsath, R.H. Kadam, K.M. Jadhav. Chemical synthesis, structural and magnetic properties of nano-structured Co–Zn–Fe–Cr ferrite. J. Alloy. Compd. 509, 5055 (2011).

A.A. Eliseev, A.V. Lukashin. Physical Properties of Substances in Nanocrystalline State (Moscow State Univ., 2007) (in Russian).

M.A. Gabal, Y.M. Al Angari. Effect of chromium ion substitution on the electromagnetic properties of nickel ferrite. Mater. Chem. Phys. 118, 153 (2009).

M.A. Gabal, S. Kosa, T.S. El Muttairi. Magnetic dilution effect of nano-crystalline NiFe2O4 synthesized via sucroseassisted combustion route. Ceram. Intern. 40, 675 (2014).

D.B. Pawar, S.M. Rathod. Synthesis of nano sized chromium (Cr3+) substituted nickel ferrite and their magnetic properties by sol-gel pethnique. Bionano Front. 8, 123 (2015).

M.A. Hakim, S.K. Nath, S.S. Sikder, K.H. Maria. Cation distribution and electromagnetic properties of spinel type Ni–Cd ferrites. J. Phys. Chem. Solids 74, 1316 (2013).

S.M. Patange, S.E. Shirsath, B.G. Toksha, S.S. Jadhav, K.M. Jadhav. Electrical and magnetic properties of Cr3+ substituted nanocrystalline nickel ferrite. J. Appl. Phys. 106, 023914 (2009).

Y. Yafet, C. Kittel. Antiferromagnetic arrangements in ferrites. Phys. Rev. 87, 290 (1952).

M.K. Rangolia, M.C. Chhandbar, A.R. Tanna, K.B. Modi, G.J. Baldha, H.H. Joshi. Magnetic behaviour of nanosized and coarse powders of Cd–Ni ferrites synthesized by wet-chemical route. Indian J. Pure Appl. Phys. 46, 60 (2008).

P.P. Gorbyk, I.V. Dubrovin, M.V. Abramov. Synthesis, structure, and magnetic properties of single-domain nanoparticles of solid solutions (Fe1− Mn) Fe2O4. Poverkhnost 7, 186 (2015) (in Ukrainian).

F. Nesa, A.K.M. Zakaria, M.A. Saeed Khan, S.M. Yunus, A.K. Das, S.G. Eriksson, M.N.I. Khan, D.K. Saha, M.A. Hakim. Structural and magnetic properties of Cr3+ doped Mg ferrites. World J. Condens. Matter Phys. 2, 27 (2012).

V.S. Bushkova. Effect of temperature on the structural and magnetic properties of Ni Co1−− Fe2O4 Nanoparticles. J. Nano-Electron. Phys. 8, 01002 (2016).

Yu. Sitidze, H. Sato. Ferrites (Mir, 1960) (in Russian).

A. Rais, A. Addou, M. Ameri, N. Bouhadouza, A. Merine. On the magnetic compensation of magnesium doped Ni-Cr ferrites. Appl. Phys. A 111, 665 (2013).

G. Nabiyouni, M.J. Fesharaki, M. Mozafari, J. Amighian. Characterization and magnetic properties of nickel ferrite nanoparticles prepared by ball milling technique. Chin. Phys. Lett. 27, 126401 (2010).

A.K. Nikumbh, A.V. Nagawade, G.S. Gugale, M.G. Chaskar, P.P. Bakare. The formation, structural, electrical, magnetic and Mossbauer properties of ferrispinels, Cd1− Ni Fe2O4. J. Mater. Sci. 37, 637 (2002).

S.P. Jadhav, B.G. Toksha, K.M. Jadhav, N.D. Shinde. Effect of cadmium substitution on structural and magnetic properties of nano sized nickel ferrite. Chin. J. Chem. Phys. 23, 459 (2010).

How to Cite
Bushkova, V. (2018). Magnetic Hysteresis and Curie Temperature in Nickel-Chromium Ferrites Synthesized by Sol-Gel Auto-Combustion Method. Ukrainian Journal of Physics, 62(11), 992.