Quantum-Mechanical Description of the Fermionic Doublet and its Link with the Dirac Equation

Authors

  • V. M. Simulik Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
  • I. Yu. Krivsky Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.12.1192

Keywords:

fermionic doublet, Dirac equation, Schr¨odinger–Foldy equation

Abstract

A brief review of the different ways of the Dirac equation derivation is given. The foundations of the relativistic canonical quantum mechanics of a fermionic doublet on the basis of the Schr¨odinger–Foldy equation of motion are formulated. In our approach, the Dirac equation is derived from the Schr¨ odinger–Foldy equation.

References

L. Foldy and S. Wouthuysen, Phys. Rev. 78, 29 (1950).

https://doi.org/10.1103/PhysRev.78.29

L. Foldy, Phys. Rev. 102, 568 (1956).

https://doi.org/10.1103/PhysRev.102.568

L. Foldy, Phys. Rev. 122, 275 (1961).

https://doi.org/10.1103/PhysRev.122.275

E. Salpeter, Phys. Rev. 87, 328 (1952).

https://doi.org/10.1103/PhysRev.87.328

W. Lucha and F. Schobert, Phys. Rev. A. 54, 3790 (1996).

https://doi.org/10.1103/PhysRevA.54.3790

Y. Chargui and A. Trabelsi, Phys. Lett. A 377, 158 (2013).

https://doi.org/10.1016/j.physleta.2012.11.048

I. Krivsky, V. Simulik, I. Lamer, and T. Zajac, arXiv: 1301.6343 [math-ph] 27 Jan 2013.

I. Krivsky, V. Simulik, I. Lamer, and T. Zajac, TWMS J. App. Eng. Math. 3, 62 (2013).

I. Krivsky, V. Simulik, T. Zajac, and I. Lamer, in: Proceedings of the 14-th Int. Conference "Mathematical Methods in Electromagnetic Theory", August 28–30, 2012 (Institute of Radiophysics and Electronics, Kharkiv, 2012), pp. 201– 204.

N. Bogoliubov, A. Logunov, and I. Todorov, Foundations of the Axiomatic Approach in Quantum Field Theory (Nauka, Moscow, 1969) (in Russian).

V. Simulik and I. Krivsky, Dopov. NAN Ukr., No. 5, 82 (2010).

I. Krivsky and V. Simulik, Cond. Matt. Phys. 13, 43101 (2010).

https://doi.org/10.5488/CMP.13.43101

V. Simulik and I. Krivsky, Phys. Lett. A 375, 2479 (2011).

https://doi.org/10.1016/j.physleta.2011.03.058

V. Simulik, I. Krivsky, and I. Lamer, TWMS J. App. Eng. Math. 3, 46 (2013).

V. Simulik and I. Krivsky, Ukr. J. Phys. 58, 523 (2013).

https://doi.org/10.15407/ujpe58.06.0523

P. Dirac, The Principles of Quantum Mechanics (Clarendon Press, Oxford, 1958).

N. Bogoliubov and D. Shirkov, Introduction to the Theory of Quantized Fields (Wiley, New York, 1980).

J. Sakurai, Advanced Quantum Mechanics (Addison– Wesley, New York, 1967).

L. Ryder, Quantum Field Theory (Cambridge Univ. Press, Cambridge, 1996).

https://doi.org/10.1017/CBO9780511813900

J. Keller, Theory of the Electron. A Theory of Matter from START (Kluwer, Dordrecht, 2001).

V. Fock and D. Iwanenko, Z. Phys. 54, 798 (1929).

https://doi.org/10.1007/BF01341739

V. Fock, Z. Phys. 57, 261 (1929).

https://doi.org/10.1007/BF01339714

A. Wightman, in Dispersion Relations and Elementary Particles, edited by C. De Witt and R. Omnes (Wiley, New York, 1960), p. 291.

H. Sallhofer, Z. Naturforsch. A 33, 1378 (1978).

https://doi.org/10.1515/zna-1978-1116

H. Sallhofer, Z. Naturforsch. A 41, 468 (1986).

S. Strinivasan and E. Sudarshan, J. Phys. A 29, 5181 (1996).

https://doi.org/10.1088/0305-4470/29/16/034

L. Lerner, Eur. J. Phys. 17, 172 (1996).

https://doi.org/10.1088/0143-0807/17/4/004

T. Kubo, I. Ohba, and H. Nitta, Phys. Lett. A 286, 227 (2001).

https://doi.org/10.1016/S0375-9601(01)00429-7

H. Cui, arXiv: quant-ph/0102114, Aug. 15, 2001.

Y.J. Ng and H. van Dam, arXiv: hep-th/0211002, Feb. 4, 2003.

M. Calerier and L. Nottale, Electromagn. Phen. 3(9), 70 (2003).

M. Evans, Found. Phys. Lett. 16, 369 (2003).

https://doi.org/10.1023/A:1025365826316

M. Evans, Found. Phys. Lett. 17, 149 (2004).

https://doi.org/10.1023/B:FOPL.0000019653.48266.23

V.M. Simulik and I.Yu. Krivsky, Rep. Math. Phys. 50, 315 (2002).

https://doi.org/10.1016/S0034-4877(02)80062-3

V.M. Simulik and I.Yu. Krivsky, Electromagn. Phen. 3(9), 103 (2003).

V.M. Simulik, in What is the Electron?, edited by V.M. Simulik (Apeiron, Montreal, 2005), p. 109.

V. Vladimirov, Methods of the Theory of Generalized Functions (Taylor and Francis, London, 2002).

von J. Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932).

G. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations (Springer, New York, 2002).

J.P. Elliott and P.J. Dawber, Symmetry in Physics (Macmillan Press, London, 1979), Vol. 1.

B.G. Wybourne, Classical Groups for Physicists (Wiley, New York, 1974).

H. Bondi, Rev. Mod. Phys. 29, 423 (1957).

https://doi.org/10.1103/RevModPhys.29.423

E. Recami, and G. Zino, Nuovo Cim. A 33, 205 (1976).

https://doi.org/10.1007/BF02734400

G. Landis, Journ. Propulsion and Power 7, 304 (1991).

https://doi.org/10.2514/3.23327

R. Wayne, Turk. J. Phys. 36, 165 (2012).

W. Kuellin, P. Gaal, K. Reimann, T. Worner, T. Elsaesser, and R. Hey, Phys. Rev. Lett. 104, 146602(1-4) (2010).

V.P. Neznamov, Phys. Part. Nucl. 37, 86 (2006).

https://doi.org/10.1134/S1063779606010023

Downloads

Published

2018-10-11

How to Cite

Simulik, V. M., & Krivsky, I. Y. (2018). Quantum-Mechanical Description of the Fermionic Doublet and its Link with the Dirac Equation. Ukrainian Journal of Physics, 58(12), 1192. https://doi.org/10.15407/ujpe58.12.1192

Issue

Section

General problems of theoretical physics