Якісні властивості зсувної в’язкості рідин
DOI:
https://doi.org/10.15407/ujpe63.11.986Ключові слова:
коефiцiєнт самодифузiї, в’язкiсть водиАнотація
В роботi наведено обґрунтування того, що 1) в’язкiсть рiдин в бiльший частинi температурних iнтервалiв iснування їх рiдких станiв визначається ефектами тертя мiж молекулярними шарами, що рухаються вiдносно один одного; 2) аргон i вода при температурах TH < T < TC (TH ≈ 315 K) належать до одного i того ж класу подiбностi їх кiнетичних коефiцiєнтiв. За допомогою принципу подiбностi для вiдповiдних станiв води i аргону розрахованi коефiцiєнти самодифузiї та зсувної в’язкостi води. В основi
цiєї подiбностi лежить той факт, що поведiнка зсувної в’язкостi води визначається усередненими потенцiалами мiжмолекулярної взаємодiї. В роботi обговорюється неадекватнiсть активацiйних механiзмiв формування процесiв в’язкостi та самодифузiї як у водi, так i у бiльшостi низько-молекулярних рiдин.
Посилання
D. Eisenberg, V. Kauzmann. The Structure and Properties of Water (Oxford Univ. Press, 1969).
Byung Chan Eu. Transport Coefcients of Fluids (Springer, 2011).
J.P. Hsu, S.H. Lin. Temperature dependence of the viscosity of nonpolymeric liquids. J. Chem. Phys. 118, 172 (2003). https://doi.org/10.1063/1.1525282
J. Frenkel. Kinetic Theory of Liquids (Dover, 1955).
E.N. da C. Andrade. The viscosity of liquids. Nature 125, 309 (1930). https://doi.org/10.1038/125309b0
H. Eyring. Viscosity, plasticity, and difusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283 (1936). https://doi.org/10.1063/1.1749836
R.H. Ewell, H. Eyring. Theory of the viscosity of liquids as a function of temperature and pressure. J. Chem. Phys. 5, 726 (1937). https://doi.org/10.1063/1.1750108
R. Casalini, C.M. Roland. An equation for the description of volume and temperature dependences of the dynamics of supercooled liquids and polymer melts. J. Non-Cryst. Sol. 353, 3936 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.03.026
Y. Pan, L.E. Boyd, J.F. Kruplak, W.E. Cleland, Jr., J.S. Wilkes, C.L. Hussey. Physical and transport properties of bis(trifuoromethylsulfonyl)imide-based room-temperature ionic liquids: application to the difusion of tris(2,2′-bipyridyl)ruthenium(II). J. Electrochem. Soc. 158, F1 (2011). https://doi.org/10.1149/1.3505006
F.M. Gacino, X. Paredes, M.J.P. C. Josefa. Pressure dependence on the viscosities of 1-butyl-2,3-dimethylimidazolium bis(trifuoromethylsulfonyl)imide and two tris(pentafuoroethyl)trifuorophosphate based ionic liquids: New measurements and modelling. J. Chem. Therm. 62, 162 (2013). https://doi.org/10.1016/j.jct.2013.02.014
A. Batchinski. Untersuchungen ¨uber die innere Reibung der Flussigkeiten. Z. Phys. Chem. 84, 643 (1913).
P.V. Makhlaichuk, V.N. Makhlaichuk, N.P. Malomuzh. Nature of the kinematic shear viscosity of low-molecular liquids with averaged potential of Lennard-Jones type. J. Mol. Liq. 225, 577 (2017). https://doi.org/10.1016/j.molliq.2016.11.101
N.P. Malomuzh, I.Z. Fisher. On the collective nature of thermal motion in liquids. Fiz. Zhidk. Sost. No. 1, 33 (1973) (in Russian).
T.V. Lokotosh, N.P. Malomuzh. Lagrange theory of thermal hydrodynamic fuctuations and collective difusion in liquids. Physica A 286, 474 (2000). https://doi.org/10.1016/S0378-4371(00)00107-2
N.H. March, M.P. Tosi, Atomic Dynamics in Liquids (Dover, 1991).
L.A. Bulavin, T.V. Lokotosh, N.P. Malomuzh. Role of the collective self-difusion in water and other liquids. J. Mol. Liq. 137, 1 (2008). https://doi.org/10.1016/j.molliq.2007.05.003
M.P. Malomuzh, A.V. Oleinik, K.M. Pankratov. The nature of molecular self-difusion in argon and water. Ukr. J. Phys. 55, 1123 (2010).
N.P. Malomuzh, V.P. Oleynik. Nature of the kinematic shear viscosity of water. J. Struct. Chem. (Russia) 49, 1055 (2008). https://doi.org/10.1007/s10947-008-0178-1
A.I. Fisenko, N.P. Malomuzh, A.V. Oleynik. To what extent are thermodynamic properties of water argon-like? Chem. Phys. Lett. 450, 297 (2008). https://doi.org/10.1016/j.cplett.2007.11.036
V.Y. Gotsul'skii, N.P. Malomuzh, M.V. Timofeev, V.E. Chechko. Contraction of aqueous solutions of monoatomic alcohols. Russ. J. Phys. Chem. A 89, 51 (2015). https://doi.org/10.1134/S0036024415010070
T.V. Lokotosh, N.P. Malomuzh, K.N. Pankratov. Thermal motion in water + electrolyte solutions according to quasi-elastic incoherent neutron scattering data. J. Chem. Eng. Data 55, 2021 (2010). https://doi.org/10.1021/je9009706
L.A. Bulavin, A.I. Fisenko, N.P. Malomuzh. Surprising properties of the kinematic shear viscosity of water. Chem. Phys. Lett. 453, 183 (2008). https://doi.org/10.1016/j.cplett.2008.01.028
V.M. Makhlaichuk. Kinematic shear viscosity of water, aqueous electrolyte solutions, and ethanol. Ukr. Fiz. Zh. 60, 855 (2015) (in Ukrainian). https://doi.org/10.15407/ujpe60.09.0854
V.N. Makhlaichuk. Kinematic shear viscosity of liquid alkaline metals. Ukr. J. Phys. 62, 672, (2017). https://doi.org/10.15407/ujpe62.08.0672
V.Yu. Bardik, V.M. Makhlaichuk. Kinematic shear viscosity of pure liquid metals Sn, Bi, Pb and their binary melts. Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky No. 4, 179 (2017) (in Ukrainian).
V.P. Slusar, N.S. Rudenko, V.M. Tretyakov. Experimental study of the viscosity of simple liquids on the saturation line and under pressure. II Argon, Krypton, Xenon. Ukr. J. Phys. 17, 1257 (1972).
P. Heitjans, J. Karger. Difusion in Condensed Matter: Methods, Materials, Models (Springer, 2005). https://doi.org/10.1007/3-540-30970-5
T.V. Lokotosh, M.P. Malomuzh, K.M. Pankratov, K.S. Shakun. New results in the theory of collective self-difusion in liquids. Ukr. Fiz. Zh. 60, 697 (2015) (in Ukrainian).
V.S. Oskotskii. To the theory of quasi-elastic scattering of cold neutrons in liquid. Fiz. Tverd. Tela 5, 1082 (1963) (in Russian). L.A. Bulavin, P.G. Ivanitskii, V.G. Krotenko, V.N. Lyashkovskaya. Neutron studies of water self-difusion in aqueous electrolyte solutions. Zh. Fiz. Khim. 11, 3220 (1987) (in Russian).
L.A. Bulavin, A.A. Vasilkevich, A.K. Dorosh, P.G. Ianitsky, V.T. Krotenko, V.I. Slisenko. Self-difusion of water in aqueous solutions of single-charged electrolytes. Ukr. J. Phys. 31, 1703 (1986).
L.A. Bulavin, N.P. Malomuzh, K.N. Pankratov. Self-difusion in water. J. Struct. Chem. 47, S50 (2006). https://doi.org/10.1007/s10947-006-0377-6
P.V. Makhlaichuk. Clusterization processes in liquid water and saturated water vapor. In Abstracts of the 6th Intern. Conference on Physics of Liquid Matter: Modern Problems, May 23–27 (2014), p. 31.
N.P. Malomuzh, I.V. Zhyganiuk, M.V. Timofeev. Nature of H-bonds in water vapor. J. Mol. Liq. 242, 175 (2017). https://doi.org/10.1016/j.molliq.2017.06.127
M.V. Timofeev. Simulation of the interaction potential between water molecules. Ukr. J. Phys. 61, 893 (2016). https://doi.org/10.15407/ujpe61.10.0893
N.P. Malomuzh, M.V. Timofeev. Modelling of potentials for interparticle interactions between methanol molecules. Condens. Matter Phys. 20, 43301 (2017). https://doi.org/10.5488/CMP.20.43301
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.