Surface Plasmon Resonance in “Monolayer of Ni Nanoparticles/Dielectric Spacer/Au (Ni) Film” Nanostructure

Tuning by Variation of Spacer Thickness

  • O. A. Yeshchenko Taras Shevchenko National University of Kyiv, Physics Department
  • V. V. Kozachenko Taras Shevchenko National University of Kyiv, Physics Department
  • A. V. Tomchuk Taras Shevchenko National University of Kyiv, Physics Department

Abstract

The dual surface plasmon resonance in Ni nanoparticles in “monolayer of Ni nanoparticles/shellac film/Au (Ni) film” planar nanostructures has been observed in UV-vis absorption spectra. The dependences of the intensity, wavelength, and width of the dual SPR absorption peaks of Ni nanoparticles coupled with an Au (Ni) film on the spacer thickness have been studied in the range of spacer thicknesses of 12–43 nm. The main features of these dependences are an increase of the intensity, the blue shift, and the monotonic behavior of the widths of SPR absorption peaks at a decrease of the spacer thickness. The observed dependences have been rationalized as a result of the plasmonic coupling of the monolayer of Ni nanoparticles with
the metal film and the variation of the dielectric permittivity of the environment of Ni nanoparticles caused by the metal film presence. The stronger dependences of the SPR spectral characteristics of Ni nanoparticles have been observed in the nanostructure containing the gold film comparing to that with a nickel one. Such effect is due to the stronger coupling of Ni nanoparticles with an Au film, and the stronger influence of an Au film on the permittivity of the environment of Ni nanoparticles.

References


  1. E. Ozbay. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189 (2006).
    https://doi.org/10.1126/science.1114849

  2. W.L. Barnes, A. Dereux, T.W. Ebbesen. Surface plasmon subwavelength optics. Nature 424, 824 (2003).
    https://doi.org/10.1038/nature01937

  3. M. I. Stockman. Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029 (2011).
    https://doi.org/10.1364/OE.19.022029

  4. P. Bermel, M. Ghebrebrhan, W. Chan, Y.X. Yeng, M. Araghchini, R. Hamam, C.H. Marton, K.F. Jensen, M. Soljaci?c, J.D. Joannopoulos, S.G. Johnson, I. Celanovic. Design and global optimization of high-efficiency thermophotovoltaic systems. Opt. Express 18, A314 (2010).
    https://doi.org/10.1364/OE.18.00A314

  5. J. Hao, J. Wang, X. Liu, W.J. Padilla, L. Zhou, M. Qiu. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251104 (2010).
    https://doi.org/10.1063/1.3442904

  6. F. Niesler, J. Gansel, S. Fischbach, M. Wegener. Metamaterial metal-based bolometers. Appl. Phys. Lett. 100, 203508 (2012).
    https://doi.org/10.1063/1.4714741

  7. L. Baldassarre, V. Giliberti, A. Rosa, M. Ortolani, A. Bonamore, P. Baiocco, K. Kjoller, P. Calvani, A. Nucara. Mapping the amide I absorption in single bacteria and mammalian cells with resonant infrared nanospectroscopy. Nanotechnology 27, 075101 (2016).
    https://doi.org/10.1088/0957-4484/27/7/075101

  8. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).
    https://doi.org/10.1103/PhysRevLett.100.207402

  9. Y. Avitzour, Y.A. Urzhumov, G. Shvets. Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Phys. Rev. B 79, 045131 (2009).
    https://doi.org/10.1103/PhysRevB.79.045131

  10. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342 (2010).
    https://doi.org/10.1021/nl9041033

  11. C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, R. Haпdar. Total routing and absorption of photons in dual color plasmonic antennas. Appl. Phys. Lett. 99, 241104 (2011).
    https://doi.org/10.1063/1.3670051

  12. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy. Large-area wide-angle spectrally selective plasmonic absorber. Phys. Rev. B 84, 075102 (2011).
    https://doi.org/10.1103/PhysRevB.84.075102

  13. A. Tittl, P. Mai, R. Taubert, D. Dregely, N.L.H. Giessen. Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano Lett. 11, 4366 (2011).
    https://doi.org/10.1021/nl202489g

  14. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419 (2003).
    https://doi.org/10.1126/science.1089171

  15. O.A. Yeshchenko, I. Bondarchuk, S. Malynych, Yu. Galabura, G. Chumanov, I. Luzinov. Surface plasmon modes of sandwich-like metal–dielectric nanostructures. Plasmonics 10, 655 (2015).
    https://doi.org/10.1007/s11468-014-9851-8

  16. V.V. Kravets, O.A. Yeshchenko, V.V. Gozhenko, L.E. Ocola, D.A. Smith, J.V. Vedral, A.O. Pinchuk. Electrodynamic coupling in regular arrays of gold nanocylinders. J. Phys. D 45, 045102 (2012).
    https://doi.org/10.1088/0022-3727/45/4/045102

  17. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A.P. Alivisatos, N. Liu. Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 10, 2721 (2010).
    https://doi.org/10.1021/nl101938p

  18. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. K?urzinger, T.A. Klar, J. Feldmann. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 100, 203002 (2008).
    https://doi.org/10.1103/PhysRevLett.100.203002

  19. A. Moreau, C. Cirac`?, J.J. Mock, R.T. Hill, Q. Wang, B.J. Wiley, A. Chilkoti, D.R. Smith. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492, 86 (2012).
    https://doi.org/10.1038/nature11615

  20. J.J. Mock, R.T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, D.R. Smith. Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett. 8, 2245 (2008).
    https://doi.org/10.1021/nl080872f

  21. C. Cirac`?, R.T. Hill, J.J. Mock, Y. Urzhumov, A.I. Fern’andez-Dom’?nguez, S.A. Maier, J.B. Pendry, A. Chilkoti, D.R. Smith. Probing the ultimate limits of plasmonic enhancement. Science 337, 1072 (2012).
    https://doi.org/10.1126/science.1224823

  22. A. Sobhani, A. Manjavacas, Y. Cao, M.J. McClain, F.J. Garc’?a de Abajo, P. Nordlander, N. J. Halas. Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film. Nano Lett. 15, 6946 (2015).
    https://doi.org/10.1021/acs.nanolett.5b02883

  23. O.A. Yeshchenko, V.V. Kozachenko, Yu.F. Liakhov, A.V. Tomchuk, M. Haftel, A.O. Pinchuk. Gold nanoparticle plasmon resonance in near-field coupled Au NPs layer/Al film nanostructure: dependence on metal film thickness. Mater. Res. Express 4, 106401 (2017).
    https://doi.org/10.1088/2053-1591/aa8c3a

  24. A. Pinchuk, A. Hilger, G. von Plessen, U. Kreibig. Substrate effect on the optical response of silver nanoparticles. Nanotechnology 15 1890 (2004).
    https://doi.org/10.1088/0957-4484/15/12/036

  25. N. Papanikolaou. Optical properties of metallic nanoparticle arrays on a thin metallic film. Phys. Rev. B 75, 235426 (2007).
    https://doi.org/10.1103/PhysRevB.75.235426

  26. P. Nordlander, F. Le. Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system. Appl. Phys. B 84, 35 (2006).
    https://doi.org/10.1007/s00340-006-2203-4

  27. F. Le, N.Z. Lwin, J.M. Steele, M. Kall, N.J. Halas, P. Nordlander. Plasmons in the metallic nanoparticle-film system as a tunable impurity problem. Nano Lett. 5, 2009 (2005).
    https://doi.org/10.1021/nl0515100

  28. N. Nedyalkov, T. Sakai, T. Miyanishi, M. Obara. Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate. Appl. Phys. Lett. 90, 123106 (2007).
    https://doi.org/10.1063/1.2715103

  29. G. Leveque, O.J.F. Martin. Optical interactions in a plasmonic particle coupled to a metallic film. Opt. Express 14, 9971 (2006).
    https://doi.org/10.1364/OE.14.009971

  30. S.K. Eah, H.M. Jaeger, N.F. Scherer, G.P. Wiederrecht, X.M. Lin. Scattered light interference from a single metal nanoparticle and its mirror image. J. Phys. Chem. B 109, 11858 (2005).
    https://doi.org/10.1021/jp0511395

  31. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, H. Cao. Time-reversed lasing and interferometric control of absorption. Science 331, 889 (2011).
    https://doi.org/10.1126/science.1200735

  32. O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, A.M. Dmytruk. Optical properties of sol–gel fabricated Ni/SiO2 glass nanocomposites. J. Phys. Chem. Solids 69, 1615 (2008).
    https://doi.org/10.1016/j.jpcs.2007.12.002

  33. S. Roy, D. Das, C. Chakravorty, D.C. Agrawal. Magnetic properties of glass–metal nanocomposites prepared by the sol–gel route and hot pressing. J. Appl. Phys. 74, 4746 (1993).
    https://doi.org/10.1063/1.354344

  34. L. N’arvaez, O. Dom’?nguez, J.R. Mart’?nez, F. Ruiz. Preparation of (Ni-B)/SiO2, Ni/SiO2 and NiO/SiO2 nanocomposites. J. Non-Cryst. Solids 318, 37 (2003).
    https://doi.org/10.1016/S0022-3093(02)01877-X

  35. M.A. Ermakova, D.Yu. Ermakov, S.V. Cherepanova, L.M. Plyasova. Synthesis of ultradispersed nickel particles by reduction of high-loaded NiO–SiO2 systems prepared by heterophase sol-gel method. J. Phys. Chem. B 106, 11922 (2002).
    https://doi.org/10.1021/jp021231q

  36. K. Takeuchi, T. Isobe, M. Senna. Effects of mechanical pretreatment of precursor sols and gels on the formation of NiO/SiO2 composites with a controlled microstructure. J. Non-Cryst. Solids 194, 58 (1996).
    https://doi.org/10.1016/0022-3093(95)00461-0

  37. J. Hern’andez-Torres, A. Mendoza-Galv’an. Optical properties of sol-gel SiO2films containing Nickel. Thin Solid Films 472, 130 (2005).
    https://doi.org/10.1016/j.tsf.2004.06.132

  38. N. Cordente, M. Respaud, F. Senocq, M.-J. Casanove, C. Amiens, B. Chaudret. Synthesis and Magnetic Properties of Nickel Nanorods. Nano Lett. 1, 565 (2001).
    https://doi.org/10.1021/nl0100522

  39. C. Estournes, T. Lutz, T. Happich, T. Quaranta, P. Wissler, J.L. Guille. Nickel nanoparticles in silica gel: Preparation and magnetic properties. J. Magn. Magn. Mater. 173, 83 (1997).
    https://doi.org/10.1016/S0304-8853(97)00144-3

  40. J. Jiao, S. Seraphin, X. Wang, J.C. Withers. Preparation and properties of ferromagnetic carboncoated Fe, Co, and Ni nanoparticles. J. Appl. Phys. 80, 103 (1996).
    https://doi.org/10.1063/1.362765

  41. F.C. Fonseca, G.F. Goya, R.F. Jardim, R. Muccillo, N.L.V. Carre?no, E. Longo, E.R. Leite. Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO2. Phys. Rev. B 66, 104406 (2002).
    https://doi.org/10.1103/PhysRevB.66.104406

  42. B.G. Ershov. Aqueous solutions of colloidal nickel: Radiation-chemical preparation, absorption spectra, and properties. Russian Chemical Bulletin 49, 1715 (2000).
    https://doi.org/10.1007/BF02496340

  43. H. Amekura, Y. Takeda, H. Kitazawa, N. Kishimoto. Modification of metal nanoparticles in SiO2 by thermal oxidation. SPIE Proc. 4977, 639 (2003).

  44. T. Isobe, S.Y. Park, R.A. Weeks, R.A. Zhur. The optical and magnetic properties of Ni+-implanted silica. J. Non-Cryst. Solids 189, 173 (1995).
    https://doi.org/10.1016/0022-3093(95)00230-8

  45. O. C’?ntora-Gonz’alez, C. Estourn`es, D. Muller, J. Guille, J.J. Grob.Magnetic behavior of Ni+ implanted silica. Nucl. Instr. Meth. B 147, 422 (1999).
    https://doi.org/10.1016/S0168-583X(98)00579-5

  46. H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, S. Mantl. Dual surface plasmon resonances in Zn nanoparticles in SiO2: An experimental study based on optical absorption and thermal stability. Nanotechnology 18, 395707 (2007).
    https://doi.org/10.1088/0957-4484/18/39/395707

  47. P.B. Johnson, R.W. Christy. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B 9, 5056 (1974).
    https://doi.org/10.1103/PhysRevB.9.5056
Published
2018-07-03
How to Cite
Yeshchenko, O., Kozachenko, V., & Tomchuk, A. (2018). Surface Plasmon Resonance in “Monolayer of Ni Nanoparticles/Dielectric Spacer/Au (Ni) Film” Nanostructure. Ukrainian Journal Of Physics, 63(5), 386. doi:10.15407/ujpe63.5.386
Section
Surface physics