Пікосекундна динаміка молекулярних об’єктів у розчинах солей літію в диметилсульфоксиді, пропіленкарбонаті та диметилкарбонаті

Автор(и)

  • M. I. Gorobets Joint Department of Electrochemical Energy Systems, Nat. Acad. of Sci. of Ukraine
  • S. A. Kirillov Joint Department of Electrochemical Energy Systems, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe63.3.245

Ключові слова:

Raman spectra, solvation, ion pairs, dephasing, modulation

Анотація

Проведено аналiз спектрiв комбiнацiйного розсiювання розчинiв солей лiтiю в диметилсульфоксидi, пропiленкарбонатi та диметилкарбонатi в дiапазонi концентрацiй вiд розведених розчинiв до сумiшей розплавлених сольватiв з солями з точки зору динамiки, зокрема визначено та проаналiзовано часи дефазування (тv) та модуляцiї (тw) всiх молекулярних об’єктiв, присутнiх у розчинах. Встановлено, що в пiкосекунднiй часовiй областi процеси дефазування та модуляцiї в молекулах розчинника, зв’язаних водневим зв’язком з анiоном та/або сольватуючих катiон повiльнiшi, нiж у молекулах вiльного розчинника. В iонних парах, роздiлених розчинником, i тv, i тw є значно довшими, нiж у сольватованих анiонах, що свiдчить про сильнi взаємодiї мiж анiонами та їх оточенням. У контактних iонних парах тv є великими, тодi як тw виявляються близькими до значень для вiльних анiонiв. Це вiдображає наближення структури рiдини до структури розплавлених солей.

Посилання

<ol>
<li>J.M. Al’?a. Raman spectroscopic studies of ion-ion interactions in aqueous and nonaqueous electrolyte solutions. In Handbook of Raman Spectroscopy, from the Research Laboratory to the Process Line, edited by I.R. Lewis, H.G.M. Edwards (Marcel Dekker, 2001) [ISBN: 0-8247-0557-2].
</li>
<li>S.A. Kirillov. Interactions and picosecond dynamics in molten salts: a review with comparison to molecular liquids. J. Mol. Liquids 76, 35 (1998).
<a href="https://doi.org/10.1016/S0167-7322(98)00052-X">https://doi.org/10.1016/S0167-7322(98)00052-X</a>
</li>
<li>S.A. Kirillov. Novel approaches in spectroscopy of interparticle interactions. Vibrational line profiles and anomalous non-coincidence effects. In Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations, edited by J. Samios, V. Durov, NATO ASI Series (Dordrecht, 2004), p. 193–227 [ISBN: 978-1-4020-1847-3].
<a href="https://doi.org/10.1007/978-1-4020-2384-2_11">https://doi.org/10.1007/978-1-4020-2384-2_11</a>
</li>
<li>S.A. Kirillov. Spectroscopy of interparticle interactions in ionic and molecular liquids: novel approaches. Pure Appl. Chem. 76, 171(2004).
<a href="https://doi.org/10.1351/pac200476010171">https://doi.org/10.1351/pac200476010171</a>
</li>
<li>I.S. Perelygin, A.S. Krauze. Raman spectra and dynamics of pyridine molecules in ionic solutions. Khim. Fiz. 7, 1231 (1988) (in Russian).
</li>
<li>I.S. Perelygin, A.S. Krauze. Vibrational and orientational relaxation of acetone molecules in ionic solutions. Khim. Fiz. 8, 1043 (1989) (in Russian).
</li>
<li>D.O. Tretyakov, V.D. Prisiazhnnyi, M.M. Gafurov, K.Sh. Rabadanov, S.A. Kirillov. Formation of contact ion pairs and solvation of Li+ ion in sulfones: Phase diagrams, conductivity, Raman spectra, and dynamics. J. Chem. Eng. Data 55, 1958 (2010).
<a href="https://doi.org/10.1021/je9009249">https://doi.org/10.1021/je9009249</a>
</li>
<li>R.L. Frost, D.W. James, R. Appleby, R.E. Mayes. Ionpair formation and anion relaxation in aqueous solutions of Group 1 perchlorates. A Raman spectral study. J. Phys. Chem. 86, 3840 (1982).
<a href="https://doi.org/10.1021/j100216a027">https://doi.org/10.1021/j100216a027</a>
</li>
<li>D.W. James, R.E. Mayes. Ion-ion-solvent interactions in solution. I. Solutions of LiClO4 in acetone. Aust. J. Chem. 35, 1775 (1982).
<a href="https://doi.org/10.1071/CH9821775">https://doi.org/10.1071/CH9821775</a>
</li>
<li> D.W. James, R.E. Mayes. Ion-ion-solvent interactions in solution. II. Solutions of LiClO4 in diethyl ether. Aust. J. Chem. 35, 1785 (1982).
<a href="https://doi.org/10.1071/CH9821785">https://doi.org/10.1071/CH9821785</a>
</li>
<li> D.W. James, R.E. Mayes. Ion-ion-solvent interactions in solution. 8. Spectroscopic studies of the lithium perchlorate/N,N-dimethylformamide system. J. Phys. Chem. 88, 637 (1984).
<a href="https://doi.org/10.1021/j150647a058">https://doi.org/10.1021/j150647a058</a>
</li>
<li> M. Li, J. Owrutsky, M. Sarisky, J.P. Culver, A. Yodh, R.M. Hochstrasser. Vibrational and rotational relaxation times of solvated molecular ions. J. Chem. Phys. 98, 5499 (1993).
<a href="https://doi.org/10.1063/1.464899">https://doi.org/10.1063/1.464899</a>
</li>
<li> Y. Yamada, A. Yamada. Review Superconcentrated electrolytes for lithium batteries. J. Electrochem. Soc. 162 A2406 (2015).
<a href="https://doi.org/10.1149/2.0041514jes">https://doi.org/10.1149/2.0041514jes</a>
</li>
<li> K.D. Fulfer, D.G. Kuroda. Solvation structure and dynamics of the lithium ion in organic carbonate-based electrolytes: A time-dependent infrared spectroscopy study. J. Phys. Chem. C 120, 24011 (2016).
<a href="https://doi.org/10.1021/acs.jpcc.6b08607">https://doi.org/10.1021/acs.jpcc.6b08607</a>
</li>
<li> K.K. Lee, K. Park, H. Lee, Y. Noh, D. Kossowska, K. Kwak, M. Cho. Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery. Nat. Commun. 8, 14658 (2017).
<a href="https://doi.org/10.1038/ncomms14658">https://doi.org/10.1038/ncomms14658</a>
</li>
<li> Y. Shen, G. Deng, C. Ge, Y. Tian, G. Wu, X. Yang, J. Zheng, K. Yuan. Solvation structure around the Li+ ion in succinonitrile-lithium salt plastic crystalline electrolytes. Phys. Chem. Chem. Phys. 18, 14867 (2016).
<a href="https://doi.org/10.1039/C6CP02878K">https://doi.org/10.1039/C6CP02878K</a>
</li>
<li> K. Yuan, H. Bian, Y. Shen, B. Jiang, J. Li, Y. Zhang, H. Chen, J. Zheng. Coordination number of Li+ in non-aqueous electrolyte solutions determined by molecular rotational measurements. J. Phys. Chem. B 118, 3689 (2014).
<a href="https://doi.org/10.1021/jp500877u">https://doi.org/10.1021/jp500877u</a>
</li>
<li> M.I. Gorobets, M.B. Ataev, M.M. Gafurov, S.A. Kirillov. Raman study of solvation in solutions of lithium salts in dimethyl sulfoxide, propylene carbonate and dimethyl carbonate. J. Mol. Liq. 205, 98 (2015).
<a href="https://doi.org/10.1016/j.molliq.2014.05.019">https://doi.org/10.1016/j.molliq.2014.05.019</a>
</li>
<li> S.A. Kirillov, M.M. Gafurov, M.I. Gorobets, M.B. Ataev. Raman study of ion pairing in solutions of lithium salts in dimethyl sulfoxide, propylene carbonate and dimethyl carbonate. J. Mol. Liq. 199, 167 (2014).
<a href="https://doi.org/10.1016/j.molliq.2014.08.032">https://doi.org/10.1016/j.molliq.2014.08.032</a>
</li>
<li> D.W. Oxtoby. Dephasing of molecular vibrations in liquids. Adv. Chem. Phys. 40, 1 (1979).
<a href="https://doi.org/10.1002/9780470142592.ch1">https://doi.org/10.1002/9780470142592.ch1</a>
</li>
<li> W.G. Rothschild. Dynamics of Molecular Liquids (Wiley, 1984) [ISBN: 978-0-4717-3971-5].
</li>
<li> C.H. Wang. Spectroscopy of Condensed Media. Dynamics of Molecular Interactions (Academic, 1985) [ISBN: 0-12-734780-1].
</li>
<li> R.A. Kubo. Stochastic theory of line-shape and relaxation. In Fluctuations, Relaxation and Resonance in Magnetic Systems, edited by G. ter Haar (Oliver and Boyd, 1962).
</li>
<li> S.A. Kirillov, M.I. Gorobets, D.O. Tretyakov, M.B. Ataev, M.M. Gafurov. Phase diagrams and conductivity of lithium salt systems in dimethyl sulfoxide, propylene carbonate and dimethyl carbonate. J. Mol. Liq. 205, 78 (2015).
<a href="https://doi.org/10.1016/j.molliq.2014.08.008">https://doi.org/10.1016/j.molliq.2014.08.008</a>
</li>
<li> M.I. Gorobets, M.B. Ataev, M.M. Gafurov, S.A. Kirillov. Speciation in solutions of lithium salts in dimethyl sulfoxide, propylene carbonate, and dimethyl carbonate from raman data: a minireview. J. Spectroscopy 2016, 1 (2016).
<a href="https://doi.org/10.1155/2016/6978560">https://doi.org/10.1155/2016/6978560</a>
</li>
<li> S.A. Kirillov. Time-correlation functions from band-shape fits without Fourier transform. Chem. Phys. Lett. 303, 37 (1999).
<a href="https://doi.org/10.1016/S0009-2614(99)00146-3">https://doi.org/10.1016/S0009-2614(99)00146-3</a>
</li>
<li> P. Hobza, Z. Havlas. Improper, blue-shifting hydrogen bond. Theor.Chem. Acc. 108, 325 (2002).
<a href="https://doi.org/10.1007/s00214-002-0367-5">https://doi.org/10.1007/s00214-002-0367-5</a>
</li>
<li> K. Hermansson. Blue-shifting hydrogen bonds. J. Phys. Chem. A 106, 4695 (2002).
<a href="https://doi.org/10.1021/jp0143948">https://doi.org/10.1021/jp0143948</a>
</li>
<li> J. Joseph, E.D. Jemmis. Red-, blue-, or no-shift in hydrogen bonds: A unified explanation. J. Am. Chem. Soc. 129, 4620 (2007).
<a href="https://doi.org/10.1021/ja067545z">https://doi.org/10.1021/ja067545z</a>
</li>
<li> S.A. Kirillov, M.I. Gorobets, M.M. Gafurov, M.B. Ataev, K.Sh. Rabadanov. Self-association and picosecond dynamics in liquid dimethyl sulfoxide. J. Phys. Chem. B 117, 9439 (2013).
<a href="https://doi.org/10.1021/jp403858c">https://doi.org/10.1021/jp403858c</a>
</li>
<li> Y. Wang, P.B. Balbuena. Associations of alkyl carbonates: Intermolecular C–H· · ·O interactions. J. Phys. Chem. A 105, 9972 (2001).
<a href="https://doi.org/10.1021/jp0126614">https://doi.org/10.1021/jp0126614</a>
</li>
<li> P.A. Brooksby, W.R. Fawcett. Infrared (attenuated total reflection) study of propylene carbonate solutions containing lithium and sodium perchlorate. Spectrochim. Acta Part A 64, 372 (2006).
<a href="https://doi.org/10.1016/j.saa.2005.07.033">https://doi.org/10.1016/j.saa.2005.07.033</a>
</li>
<li> J.E. Katon, M.D. Cohen. The vibrational spectra and structure of dimethyl carbonate and its conformational behavior. Can. J. Chem. 53, 1378 (1975)
<a href="https://doi.org/10.1139/v75-191">https://doi.org/10.1139/v75-191</a>
</li>
<li> M. Takeuchi, N. Matubayasi, Y. Kameda, B. Minofar, S.-I. Ishiguro, Y. Umebayashi. Free-energy and structural analysis of ion solvation and contact ion-pair formation of Li+ with BF?4 and PF?6 in water and carbonate solvents. J. Phys. Chem. B 116, 6476 (2012).
<a href="https://doi.org/10.1021/jp3011487">https://doi.org/10.1021/jp3011487</a>
</li>
<li> A.A. Kloss, W.R. Fawcett. ATR-FTIR studies of ionic salvation and ion-pairing in dimethylsulfoxide solutions of the alkali metal nitrates. J. Chem. Soc., Faraday Trans. 94, 1587 (1998).
<a href="https://doi.org/10.1039/a800427g">https://doi.org/10.1039/a800427g</a>
</li>
<li> Z. Wang, B. Huang, S. Wang, R. Xue, X. Huang, L. Chen. Vibrational spectroscopic study of the interaction between lithium perchlorate and dimethylsulfoxide. Electrochim. Acta 42, 2611 (1997).
<a href="https://doi.org/10.1016/S0013-4686(96)00440-9">https://doi.org/10.1016/S0013-4686(96)00440-9</a>
</li>
<li> X. Xuan, J. Wang, Y. Zhao, J. Zhu. Experimental and computational studies on the solvation of lithium tetrafluoroborate in dimethylsulfoxide. J. Raman Spectrosc. 38, 865 (2007).
<a href="https://doi.org/10.1002/jrs.1732">https://doi.org/10.1002/jrs.1732</a>
</li>
<li> M.I.S. Sastry, S. Singh. Second derivative analysis of S=O stretching band in Raman spectra of dimethylsulphoxide in carbon tetrachloride and water. Proc. Indian Acad. Sci. (Chem. Sci.) 95, 499 (1985).
</li>
<li> A. Brodin, P. Jacobsson. Dipolar interaction and molecular ordering in liquid propylenecarbonate: Anomalous dielectric susceptibility and Raman non-coincidence effect. J. Mol. Liq. 164, 17 (2011).
<a href="https://doi.org/10.1016/j.molliq.2011.08.001">https://doi.org/10.1016/j.molliq.2011.08.001</a>
</li>
<li> I.S. Perelygin, I.G. Itkulov, A.S. Krauze. Association of molecules of liquid propylene carbonate according to Raman spectroscopy. Russ. J. Phys. Chem. 66, 573 (1992).
</li>
<li> D. Battisti, G.A. Nazri, B. Klassen, R. Aroca. Vibrational studies of lithium perchlorate in propylenecarbonate solutions. J. Phys. Chem. 97, 5826 (1993).
<a href="https://doi.org/10.1021/j100124a007">https://doi.org/10.1021/j100124a007</a>
</li>
<li> B. Collingwood, H. Lee, J.K. Wilmshurst. The structures and vibrational spectra of methylchloroformate and dimethylcarbonate. Aust. J. Chem. 19, 1637 (1966).
<a href="https://doi.org/10.1071/CH9661637">https://doi.org/10.1071/CH9661637</a>
</li>
<li> S.A. Kirillov, E.A. Pavlatou, G.N. Papatheodorou. Instantaneous collision complexes in molten alkali halides: Picosecond dynamics from low-frequency Raman data. J. Chem. Phys. 116, 9341 (2002).
<a href="https://doi.org/10.1063/1.1473810">https://doi.org/10.1063/1.1473810</a>
</li>
<li> S.A. Kirillov. Vibrational spectra of fused salts and dynamic criterion of complex formation in ionic liquids. J. Mol. Struct. 651–653, 289 (2003).
<a href="https://doi.org/10.1016/S0022-2860(03)00126-1">https://doi.org/10.1016/S0022-2860(03)00126-1</a>
</li>
<li> J.M. Al’?a, H.G.M. Edwards. FT-Raman study of ionic interactions in lithium and silver tetrafluoroborate solutions in acrylonitrile. J. Solut. Chem. 29, 781 (2000).
<a href="https://doi.org/10.1023/A:1005144113352">https://doi.org/10.1023/A:1005144113352</a>
</li>
<li> I.S. Perelygin, M.A. Klimchuk. Manifestation of interionic interactions in the IR absorption spectra of the tetrafluoroborate ion. J. Appl. Spectrosc. 50, 207 (1989).
<a href="https://doi.org/10.1007/BF00659987">https://doi.org/10.1007/BF00659987</a>
</li>
<li> J.M. Al’?a, H.G.M. Edwards. Ion solvation and ion association in lithium trifluoromethanesulfonate solutions in three aprotic solvents. An FT-Raman spectroscopic study. Vibrational Spectrosc. 24, 185 (2000).
<a href="https://doi.org/10.1016/S0924-2031(00)00073-4">https://doi.org/10.1016/S0924-2031(00)00073-4</a>
</li>
<li> I.S. Perelygin, G.P. Mikhailov, S.V. Tuchkov. Manifestations of ion-ion interaction in the Raman spectra of the trifluoromethanesulfonate ion. J. Appl. Spectrosc. 55, 689 (1991).
<a href="https://doi.org/10.1007/BF00662409">https://doi.org/10.1007/BF00662409</a>
</li>
<li> M.I.S. Sastry, S. Singh. Raman spectral studies of solutions of alkali metal perchlorates in dimethyl sulfoxide and water. Can. J. Chem. 63, 1351 (1985).
<a href="https://doi.org/10.1139/v85-231">https://doi.org/10.1139/v85-231</a>
</li>
<li> M. Chabanel, D. Legoff, K. Touaj. Aggregation of perchlorates in aprotic donor solvents. Part 1. Lithium and sodium perchlorates. J. Chem. Soc., Faraday Trans. 92, 4199 (1996).
<a href="https://doi.org/10.1039/FT9969204199">https://doi.org/10.1039/FT9969204199</a>
</li>
<li> I.S. Perelygin, G.P. Mikhailov. Appearance of ion-ion interactions in the Raman scattering spectra of the perchlorate ion. J. Appl. Spectrosc. 49, 713 (1988).
<a href="https://doi.org/10.1007/BF00662911">https://doi.org/10.1007/BF00662911</a>
</li>
<li> X. Guo, S.H. Tan, S.F. Pang, Y.H. Zhang. Measurement of the association constants through micro-Raman spectra of supersaturated lithium perchlorate droplets. Sci. China Chem. 56, 1633 (2013).
<a href="https://doi.org/10.1007/s11426-013-4970-1">https://doi.org/10.1007/s11426-013-4970-1</a>
</li></ol>

Downloads

Опубліковано

2018-04-20

Як цитувати

Gorobets, M. I., & Kirillov, S. A. (2018). Пікосекундна динаміка молекулярних об’єктів у розчинах солей літію в диметилсульфоксиді, пропіленкарбонаті та диметилкарбонаті. Український фізичний журнал, 63(3), 245. https://doi.org/10.15407/ujpe63.3.245

Номер

Розділ

Фізика рідин та рідинних систем, біофізика і медична фізика