Picosecond Dynamics of Molecular Entities in Lithium Salt Solutions in Dimethyl Sulfoxide, Propylene Carbonate, and Dimethyl Carbonate

Authors

  • M. I. Gorobets Joint Department of Electrochemical Energy Systems, Nat. Acad. of Sci. of Ukraine
  • S. A. Kirillov Joint Department of Electrochemical Energy Systems, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe63.3.245

Keywords:

Raman spectra, solvation, ion pairs, dephasing, modulation

Abstract

An analysis of the Raman spectra of the solutions of lithium salts in dimethyl sulfoxide, propylene carbonate, and dimethyl carbonate in a concentration range from diluted solutions to the mixtures of molten solvates with salts has been performed in terms of the dynamics, specifically, the dephasing (тv) and modulation (тw) times of all molecular entities present in solutions are determined and analyzed. It has been found that, in the picosecond time domain, the dephasing and modulation in solvent molecules hydrogen-bonded with an anion and/or solvating a cation are slower than in free solvent molecules. In solvent separated ion pairs, both тv and тw are much longer than in solvated anions, thus indicating the strong interactions between anions and their surrounding. In contact ion pairs, тv are great, whereas тw appear close to those for free anions. This reflects that the structure of the liquid tends to the structure of molten salts.

References

<ol>
<li>J.M. Al’?a. Raman spectroscopic studies of ion-ion interactions in aqueous and nonaqueous electrolyte solutions. In Handbook of Raman Spectroscopy, from the Research Laboratory to the Process Line, edited by I.R. Lewis, H.G.M. Edwards (Marcel Dekker, 2001) [ISBN: 0-8247-0557-2].
</li>
<li>S.A. Kirillov. Interactions and picosecond dynamics in molten salts: a review with comparison to molecular liquids. J. Mol. Liquids 76, 35 (1998).
<a href="https://doi.org/10.1016/S0167-7322(98)00052-X">https://doi.org/10.1016/S0167-7322(98)00052-X</a>
</li>
<li>S.A. Kirillov. Novel approaches in spectroscopy of interparticle interactions. Vibrational line profiles and anomalous non-coincidence effects. In Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations, edited by J. Samios, V. Durov, NATO ASI Series (Dordrecht, 2004), p. 193–227 [ISBN: 978-1-4020-1847-3].
<a href="https://doi.org/10.1007/978-1-4020-2384-2_11">https://doi.org/10.1007/978-1-4020-2384-2_11</a>
</li>
<li>S.A. Kirillov. Spectroscopy of interparticle interactions in ionic and molecular liquids: novel approaches. Pure Appl. Chem. 76, 171(2004).
<a href="https://doi.org/10.1351/pac200476010171">https://doi.org/10.1351/pac200476010171</a>
</li>
<li>I.S. Perelygin, A.S. Krauze. Raman spectra and dynamics of pyridine molecules in ionic solutions. Khim. Fiz. 7, 1231 (1988) (in Russian).
</li>
<li>I.S. Perelygin, A.S. Krauze. Vibrational and orientational relaxation of acetone molecules in ionic solutions. Khim. Fiz. 8, 1043 (1989) (in Russian).
</li>
<li>D.O. Tretyakov, V.D. Prisiazhnnyi, M.M. Gafurov, K.Sh. Rabadanov, S.A. Kirillov. Formation of contact ion pairs and solvation of Li+ ion in sulfones: Phase diagrams, conductivity, Raman spectra, and dynamics. J. Chem. Eng. Data 55, 1958 (2010).
<a href="https://doi.org/10.1021/je9009249">https://doi.org/10.1021/je9009249</a>
</li>
<li>R.L. Frost, D.W. James, R. Appleby, R.E. Mayes. Ionpair formation and anion relaxation in aqueous solutions of Group 1 perchlorates. A Raman spectral study. J. Phys. Chem. 86, 3840 (1982).
<a href="https://doi.org/10.1021/j100216a027">https://doi.org/10.1021/j100216a027</a>
</li>
<li>D.W. James, R.E. Mayes. Ion-ion-solvent interactions in solution. I. Solutions of LiClO4 in acetone. Aust. J. Chem. 35, 1775 (1982).
<a href="https://doi.org/10.1071/CH9821775">https://doi.org/10.1071/CH9821775</a>
</li>
<li> D.W. James, R.E. Mayes. Ion-ion-solvent interactions in solution. II. Solutions of LiClO4 in diethyl ether. Aust. J. Chem. 35, 1785 (1982).
<a href="https://doi.org/10.1071/CH9821785">https://doi.org/10.1071/CH9821785</a>
</li>
<li> D.W. James, R.E. Mayes. Ion-ion-solvent interactions in solution. 8. Spectroscopic studies of the lithium perchlorate/N,N-dimethylformamide system. J. Phys. Chem. 88, 637 (1984).
<a href="https://doi.org/10.1021/j150647a058">https://doi.org/10.1021/j150647a058</a>
</li>
<li> M. Li, J. Owrutsky, M. Sarisky, J.P. Culver, A. Yodh, R.M. Hochstrasser. Vibrational and rotational relaxation times of solvated molecular ions. J. Chem. Phys. 98, 5499 (1993).
<a href="https://doi.org/10.1063/1.464899">https://doi.org/10.1063/1.464899</a>
</li>
<li> Y. Yamada, A. Yamada. Review Superconcentrated electrolytes for lithium batteries. J. Electrochem. Soc. 162 A2406 (2015).
<a href="https://doi.org/10.1149/2.0041514jes">https://doi.org/10.1149/2.0041514jes</a>
</li>
<li> K.D. Fulfer, D.G. Kuroda. Solvation structure and dynamics of the lithium ion in organic carbonate-based electrolytes: A time-dependent infrared spectroscopy study. J. Phys. Chem. C 120, 24011 (2016).
<a href="https://doi.org/10.1021/acs.jpcc.6b08607">https://doi.org/10.1021/acs.jpcc.6b08607</a>
</li>
<li> K.K. Lee, K. Park, H. Lee, Y. Noh, D. Kossowska, K. Kwak, M. Cho. Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery. Nat. Commun. 8, 14658 (2017).
<a href="https://doi.org/10.1038/ncomms14658">https://doi.org/10.1038/ncomms14658</a>
</li>
<li> Y. Shen, G. Deng, C. Ge, Y. Tian, G. Wu, X. Yang, J. Zheng, K. Yuan. Solvation structure around the Li+ ion in succinonitrile-lithium salt plastic crystalline electrolytes. Phys. Chem. Chem. Phys. 18, 14867 (2016).
<a href="https://doi.org/10.1039/C6CP02878K">https://doi.org/10.1039/C6CP02878K</a>
</li>
<li> K. Yuan, H. Bian, Y. Shen, B. Jiang, J. Li, Y. Zhang, H. Chen, J. Zheng. Coordination number of Li+ in non-aqueous electrolyte solutions determined by molecular rotational measurements. J. Phys. Chem. B 118, 3689 (2014).
<a href="https://doi.org/10.1021/jp500877u">https://doi.org/10.1021/jp500877u</a>
</li>
<li> M.I. Gorobets, M.B. Ataev, M.M. Gafurov, S.A. Kirillov. Raman study of solvation in solutions of lithium salts in dimethyl sulfoxide, propylene carbonate and dimethyl carbonate. J. Mol. Liq. 205, 98 (2015).
<a href="https://doi.org/10.1016/j.molliq.2014.05.019">https://doi.org/10.1016/j.molliq.2014.05.019</a>
</li>
<li> S.A. Kirillov, M.M. Gafurov, M.I. Gorobets, M.B. Ataev. Raman study of ion pairing in solutions of lithium salts in dimethyl sulfoxide, propylene carbonate and dimethyl carbonate. J. Mol. Liq. 199, 167 (2014).
<a href="https://doi.org/10.1016/j.molliq.2014.08.032">https://doi.org/10.1016/j.molliq.2014.08.032</a>
</li>
<li> D.W. Oxtoby. Dephasing of molecular vibrations in liquids. Adv. Chem. Phys. 40, 1 (1979).
<a href="https://doi.org/10.1002/9780470142592.ch1">https://doi.org/10.1002/9780470142592.ch1</a>
</li>
<li> W.G. Rothschild. Dynamics of Molecular Liquids (Wiley, 1984) [ISBN: 978-0-4717-3971-5].
</li>
<li> C.H. Wang. Spectroscopy of Condensed Media. Dynamics of Molecular Interactions (Academic, 1985) [ISBN: 0-12-734780-1].
</li>
<li> R.A. Kubo. Stochastic theory of line-shape and relaxation. In Fluctuations, Relaxation and Resonance in Magnetic Systems, edited by G. ter Haar (Oliver and Boyd, 1962).
</li>
<li> S.A. Kirillov, M.I. Gorobets, D.O. Tretyakov, M.B. Ataev, M.M. Gafurov. Phase diagrams and conductivity of lithium salt systems in dimethyl sulfoxide, propylene carbonate and dimethyl carbonate. J. Mol. Liq. 205, 78 (2015).
<a href="https://doi.org/10.1016/j.molliq.2014.08.008">https://doi.org/10.1016/j.molliq.2014.08.008</a>
</li>
<li> M.I. Gorobets, M.B. Ataev, M.M. Gafurov, S.A. Kirillov. Speciation in solutions of lithium salts in dimethyl sulfoxide, propylene carbonate, and dimethyl carbonate from raman data: a minireview. J. Spectroscopy 2016, 1 (2016).
<a href="https://doi.org/10.1155/2016/6978560">https://doi.org/10.1155/2016/6978560</a>
</li>
<li> S.A. Kirillov. Time-correlation functions from band-shape fits without Fourier transform. Chem. Phys. Lett. 303, 37 (1999).
<a href="https://doi.org/10.1016/S0009-2614(99)00146-3">https://doi.org/10.1016/S0009-2614(99)00146-3</a>
</li>
<li> P. Hobza, Z. Havlas. Improper, blue-shifting hydrogen bond. Theor.Chem. Acc. 108, 325 (2002).
<a href="https://doi.org/10.1007/s00214-002-0367-5">https://doi.org/10.1007/s00214-002-0367-5</a>
</li>
<li> K. Hermansson. Blue-shifting hydrogen bonds. J. Phys. Chem. A 106, 4695 (2002).
<a href="https://doi.org/10.1021/jp0143948">https://doi.org/10.1021/jp0143948</a>
</li>
<li> J. Joseph, E.D. Jemmis. Red-, blue-, or no-shift in hydrogen bonds: A unified explanation. J. Am. Chem. Soc. 129, 4620 (2007).
<a href="https://doi.org/10.1021/ja067545z">https://doi.org/10.1021/ja067545z</a>
</li>
<li> S.A. Kirillov, M.I. Gorobets, M.M. Gafurov, M.B. Ataev, K.Sh. Rabadanov. Self-association and picosecond dynamics in liquid dimethyl sulfoxide. J. Phys. Chem. B 117, 9439 (2013).
<a href="https://doi.org/10.1021/jp403858c">https://doi.org/10.1021/jp403858c</a>
</li>
<li> Y. Wang, P.B. Balbuena. Associations of alkyl carbonates: Intermolecular C–H· · ·O interactions. J. Phys. Chem. A 105, 9972 (2001).
<a href="https://doi.org/10.1021/jp0126614">https://doi.org/10.1021/jp0126614</a>
</li>
<li> P.A. Brooksby, W.R. Fawcett. Infrared (attenuated total reflection) study of propylene carbonate solutions containing lithium and sodium perchlorate. Spectrochim. Acta Part A 64, 372 (2006).
<a href="https://doi.org/10.1016/j.saa.2005.07.033">https://doi.org/10.1016/j.saa.2005.07.033</a>
</li>
<li> J.E. Katon, M.D. Cohen. The vibrational spectra and structure of dimethyl carbonate and its conformational behavior. Can. J. Chem. 53, 1378 (1975)
<a href="https://doi.org/10.1139/v75-191">https://doi.org/10.1139/v75-191</a>
</li>
<li> M. Takeuchi, N. Matubayasi, Y. Kameda, B. Minofar, S.-I. Ishiguro, Y. Umebayashi. Free-energy and structural analysis of ion solvation and contact ion-pair formation of Li+ with BF?4 and PF?6 in water and carbonate solvents. J. Phys. Chem. B 116, 6476 (2012).
<a href="https://doi.org/10.1021/jp3011487">https://doi.org/10.1021/jp3011487</a>
</li>
<li> A.A. Kloss, W.R. Fawcett. ATR-FTIR studies of ionic salvation and ion-pairing in dimethylsulfoxide solutions of the alkali metal nitrates. J. Chem. Soc., Faraday Trans. 94, 1587 (1998).
<a href="https://doi.org/10.1039/a800427g">https://doi.org/10.1039/a800427g</a>
</li>
<li> Z. Wang, B. Huang, S. Wang, R. Xue, X. Huang, L. Chen. Vibrational spectroscopic study of the interaction between lithium perchlorate and dimethylsulfoxide. Electrochim. Acta 42, 2611 (1997).
<a href="https://doi.org/10.1016/S0013-4686(96)00440-9">https://doi.org/10.1016/S0013-4686(96)00440-9</a>
</li>
<li> X. Xuan, J. Wang, Y. Zhao, J. Zhu. Experimental and computational studies on the solvation of lithium tetrafluoroborate in dimethylsulfoxide. J. Raman Spectrosc. 38, 865 (2007).
<a href="https://doi.org/10.1002/jrs.1732">https://doi.org/10.1002/jrs.1732</a>
</li>
<li> M.I.S. Sastry, S. Singh. Second derivative analysis of S=O stretching band in Raman spectra of dimethylsulphoxide in carbon tetrachloride and water. Proc. Indian Acad. Sci. (Chem. Sci.) 95, 499 (1985).
</li>
<li> A. Brodin, P. Jacobsson. Dipolar interaction and molecular ordering in liquid propylenecarbonate: Anomalous dielectric susceptibility and Raman non-coincidence effect. J. Mol. Liq. 164, 17 (2011).
<a href="https://doi.org/10.1016/j.molliq.2011.08.001">https://doi.org/10.1016/j.molliq.2011.08.001</a>
</li>
<li> I.S. Perelygin, I.G. Itkulov, A.S. Krauze. Association of molecules of liquid propylene carbonate according to Raman spectroscopy. Russ. J. Phys. Chem. 66, 573 (1992).
</li>
<li> D. Battisti, G.A. Nazri, B. Klassen, R. Aroca. Vibrational studies of lithium perchlorate in propylenecarbonate solutions. J. Phys. Chem. 97, 5826 (1993).
<a href="https://doi.org/10.1021/j100124a007">https://doi.org/10.1021/j100124a007</a>
</li>
<li> B. Collingwood, H. Lee, J.K. Wilmshurst. The structures and vibrational spectra of methylchloroformate and dimethylcarbonate. Aust. J. Chem. 19, 1637 (1966).
<a href="https://doi.org/10.1071/CH9661637">https://doi.org/10.1071/CH9661637</a>
</li>
<li> S.A. Kirillov, E.A. Pavlatou, G.N. Papatheodorou. Instantaneous collision complexes in molten alkali halides: Picosecond dynamics from low-frequency Raman data. J. Chem. Phys. 116, 9341 (2002).
<a href="https://doi.org/10.1063/1.1473810">https://doi.org/10.1063/1.1473810</a>
</li>
<li> S.A. Kirillov. Vibrational spectra of fused salts and dynamic criterion of complex formation in ionic liquids. J. Mol. Struct. 651–653, 289 (2003).
<a href="https://doi.org/10.1016/S0022-2860(03)00126-1">https://doi.org/10.1016/S0022-2860(03)00126-1</a>
</li>
<li> J.M. Al’?a, H.G.M. Edwards. FT-Raman study of ionic interactions in lithium and silver tetrafluoroborate solutions in acrylonitrile. J. Solut. Chem. 29, 781 (2000).
<a href="https://doi.org/10.1023/A:1005144113352">https://doi.org/10.1023/A:1005144113352</a>
</li>
<li> I.S. Perelygin, M.A. Klimchuk. Manifestation of interionic interactions in the IR absorption spectra of the tetrafluoroborate ion. J. Appl. Spectrosc. 50, 207 (1989).
<a href="https://doi.org/10.1007/BF00659987">https://doi.org/10.1007/BF00659987</a>
</li>
<li> J.M. Al’?a, H.G.M. Edwards. Ion solvation and ion association in lithium trifluoromethanesulfonate solutions in three aprotic solvents. An FT-Raman spectroscopic study. Vibrational Spectrosc. 24, 185 (2000).
<a href="https://doi.org/10.1016/S0924-2031(00)00073-4">https://doi.org/10.1016/S0924-2031(00)00073-4</a>
</li>
<li> I.S. Perelygin, G.P. Mikhailov, S.V. Tuchkov. Manifestations of ion-ion interaction in the Raman spectra of the trifluoromethanesulfonate ion. J. Appl. Spectrosc. 55, 689 (1991).
<a href="https://doi.org/10.1007/BF00662409">https://doi.org/10.1007/BF00662409</a>
</li>
<li> M.I.S. Sastry, S. Singh. Raman spectral studies of solutions of alkali metal perchlorates in dimethyl sulfoxide and water. Can. J. Chem. 63, 1351 (1985).
<a href="https://doi.org/10.1139/v85-231">https://doi.org/10.1139/v85-231</a>
</li>
<li> M. Chabanel, D. Legoff, K. Touaj. Aggregation of perchlorates in aprotic donor solvents. Part 1. Lithium and sodium perchlorates. J. Chem. Soc., Faraday Trans. 92, 4199 (1996).
<a href="https://doi.org/10.1039/FT9969204199">https://doi.org/10.1039/FT9969204199</a>
</li>
<li> I.S. Perelygin, G.P. Mikhailov. Appearance of ion-ion interactions in the Raman scattering spectra of the perchlorate ion. J. Appl. Spectrosc. 49, 713 (1988).
<a href="https://doi.org/10.1007/BF00662911">https://doi.org/10.1007/BF00662911</a>
</li>
<li> X. Guo, S.H. Tan, S.F. Pang, Y.H. Zhang. Measurement of the association constants through micro-Raman spectra of supersaturated lithium perchlorate droplets. Sci. China Chem. 56, 1633 (2013).
<a href="https://doi.org/10.1007/s11426-013-4970-1">https://doi.org/10.1007/s11426-013-4970-1</a>
</li></ol>

Downloads

Published

2018-04-20

How to Cite

Gorobets, M. I., & Kirillov, S. A. (2018). Picosecond Dynamics of Molecular Entities in Lithium Salt Solutions in Dimethyl Sulfoxide, Propylene Carbonate, and Dimethyl Carbonate. Ukrainian Journal of Physics, 63(3), 245. https://doi.org/10.15407/ujpe63.3.245

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics