Методи обробки APRES-спектрів на основі нейронних мереж (оглядова стаття)

Автор(и)

  • Yu.V. Pustovit Taras Shevchenko National University of Kyiv
  • Ye.P. Lytveniuk Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe69.1.53

Ключові слова:

фотоемiсiйна спектроскопiя з роздiленням по куту, згортковi нейроннi мережi, машинне навчання

Анотація

Вдосконалення методу фотоемiсiйної спектроскопiї з роздiленням по куту (ARPES) суттєво збiльшили кiлькiсть даних, що отримуються пiд час вимiрювань. “Класичнi” методи, такi як MDC- та EDC-аналiз або методи цифрової обробки зображень, не дозволяють швидко та ефективно обробляти значнi обсяги отриманих даних. У статтi проведено огляд iснуючих методiв обробки спектрiв на основi згорткових нейронних мереж (ЗНМ), що дозволяють ефективно знешумлювати спектри та визначати електронну дисперсiю. Крiм того, запропоновано низку перспективних застосувань методiв на основi ЗНМ для задач, що виникають при обробцi фотоемiсiйних спектрiв.

Посилання

A.A. Kordyuk. ARPES experiment in fermiology of quasi-2D metals (Review Article). Low Temp. Phys. 40, 286 (2014).

https://doi.org/10.1063/1.4871745

A. Damascelli, Z. Hussain, Z.-X. Shen. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473 (2003).

https://doi.org/10.1103/RevModPhys.75.473

J.A. Sobota, Yu He, Z.-X. Shen. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys. 93, 025006 (2021).

https://doi.org/10.1103/RevModPhys.93.025006

Shi Dong, Ping Wang, Khushnood Abbas. A survey on deep learning and its applications. Comp. Sci. Rev. 40, 100379 (2021).

https://doi.org/10.1016/j.cosrev.2021.100379

S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. Presa Reyes, M.-L. Shyu, S.-C. Chen, S. Iyengar. A survey on deep learning: Algorithms, techniques, and applications. ACM Comput. Surv. 51, 1 (2018).

https://doi.org/10.1145/3234150

A. Mart, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. Gordon Murray et al. TensorFlow: A system for large-scale machine learning. arxiv.org/abs/1605.08695.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. K¨opf, E. Yang, Z. DeVito, Zach M. Raison et al. PyTorch: An imperative style, High-performance deep learning library. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, December 8-14, 2019.

C. Adam-Bourdarios, G. Cowan, C. Germain-Renaud, I. Guyon, B. K'egl, D. Rousseau. The higgs machine learning challenge. J. Phys. Conf. Ser. 664, 072015 (2015).

https://doi.org/10.1088/1742-6596/664/7/072015

J. Dean, M. Scheffler, A.R.P. Thomas, S.V. Barabash, R. Bhowmik, T. Bazhirov. The higgs machine learning challenge. arXiv: 2112.00239 [cond-mat.mtrl-sci].

P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny, A. Mollo, M. Zeller, S.A. Friedler, J. Schrier, A.J. Norquist. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73 (2016).

https://doi.org/10.1038/nature17439

S.R. Xie, Y. Quan, A.C. Hire, B. Deng, J.M. DeStefano, I. Salinas, U.S. Shah, L. Fanfarillo, J. Lim, J. Kim, G.R. Stewart, J.J. Hamlin, P.J. Hirschfeld, R.G. Hennig. Machine learning of superconducting critical temperature from Eliashberg theory. Npj Comput. Mater. 8, 14 (2022).

https://doi.org/10.1038/s41524-021-00666-7

J. Schmidt, M.R.G. Marques, S. Botti, M.A.L. Marques. Recent advances and applications of machine learning in solid-state materials science. Npj Comput. Mater. 5, 1 (2019).

https://doi.org/10.1038/s41524-019-0221-0

R. Yamashita, M. Nishio, R.K.G. Do, K. Togashi. Convolutional neural networks: An overview and application in radiology. Insights into Imaging 9, 611 (2018).

https://doi.org/10.1007/s13244-018-0639-9

K. O'Shea, R. Nash. An introduction to convolutional neural networks. arXiv:1511.08458.[cs.NE].

I. Guyon, A. Elisseeff. Feature Extraction: Foundations and Applications. Edited by I. Guyon, M. Nikravesh, S. Gunn, L.A. Zadeh (Springer, 2013) [ISBN: 978-3-540-35487-1].

R.C. Gonzalez, R.E. Woods. Digital Image Processing 3rd edition (Prentice Hall, 2008) [ISBN: 978-0131687288].

P. Zhang, P. Richard, T. Qian,Y.-M. Xu,X. Dai, H.Ding. A precise method for visualizing dispersive features in image plots. Rev. Sci. Instrum. 82, 043712 (2011).

https://doi.org/10.1063/1.3585113

Yu He, Y. Wang, Z.-X. Shen.Visualizing dispersive features in 2D image via minimum gradient method. Rev. Sci. Instrum. 88, 073903 (2017).

https://doi.org/10.1063/1.4993919

H. Peng, X. Gao, Yu He, Y. Li, Y. Ji, Ch. Liu, S.A. Ekahana, D. Pei, Z. Liu, Z. Shen, Yu. Chen. Super resolution convolutional neural network for feature extraction in spectroscopic data. Rev. Sci. Instrum. 91, 033905 (2020).

https://doi.org/10.1063/1.5132586

Yo. Kim, D. Oh, S. Huh, D. Song, S. Jeong, Ju. Kwon, M. Kim, D. Kim, H. Ryu, J. Jung, W. Kyung, B. Sohn, S. Lee, J. Hyun, Ye. Lee et al. Deep learning-based statistical noise reduction for multidimensional spectral data. Rev. Sci. Instrum. 92, 073901 (2021).

https://doi.org/10.1063/5.0054920

F. Restrepo, Ju. Zhao, U. Chatterjee. Deep learning-based statistical noise reduction for multidimensional spectral data. Rev. Sci. Instrum. 93, 065106 (2022).

G.E. Hinton, R.R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science 331, 504 (2006).

https://doi.org/10.1126/science.1127647

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371 (2010).

R. Atienza. Advanced Deep Learning with Keras: Apply Deep Learning Techniques, Autoencoders, GANs, Variational Autoencoders, Deep Reinforcement Learning, Policy Gradients, and More (Packt Publishing, 2018) [ISBN: 978-1788629416].

R. Atienza. Advanced Deep Learning with TensorFlow 2 and Keras: Apply DL, GANs, VAEs, Deep RL, Unsupervised Learning, Object Detection and Segmentation, and More (Packt Publishing, 2020) [ISBN: 978-1838825720].

D. Huang, J. Liu, T. Qian, Y.F. Yang. Spectroscopic data de-noising via training-set-free deep learning method. Sci. China: Phys. Mech. Astron. 66, 267011 (2023).

https://doi.org/10.1007/s11433-022-2075-x

J. Liu,D. Huang, Y.F. Yang, T. Qian. Removing grid structure in angle-resolved photoemission spectra via deep learning method. Phys. Rev. B 107, 165106 (2023).

https://doi.org/10.1103/PhysRevB.107.165106

Y. Huang, J. Xu, Y. Zhou, T. Tong, X. Zhuang. Diagnosis of Alzheimer's disease via multi-modality 3D convolutional neural network. Front. Neurosci. 13, (2019).

https://doi.org/10.3389/fnins.2019.00509

R. Atole, D. Park. A multiclass deep convolutional neural network classifier for detection of common rice plant anomalies. J. Adv. Comput. Sci. App. 9, (2018).

https://doi.org/10.14569/IJACSA.2018.090109

A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M.D. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, P. Vahle. A convolutional neural network neutrino event classifier. J. Instrum. 11, P09001 (2016).

https://doi.org/10.1088/1748-0221/11/09/P09001

A.A. Kordyuk. Pseudogap from ARPES experiment: Three gaps in cuprates and topological superconductivity (Review Article). Low Temp. Phys. 41, 417 (2015).

https://doi.org/10.1063/1.4919371

T. Valla, A.V. Fedorov, P.D. Johnson, B.O. Wells, S.L. Hulbert, Q. Li, G.D. Gu, N. Koshizuka. Evidence for quantum critical behavior in the optimally doped cuprate. Science 285, 2110 (1999).

https://doi.org/10.1126/science.285.5436.2110

Z.-X. Shen, J. R. Schrieffer. Momentum, temperature, and doping dependence of photoemission lineshape and implications for the nature of the pairing potential in high-Tc superconducting materials. Phys. Rev. Lett. 78, 1771 (1997).

https://doi.org/10.1103/PhysRevLett.78.1771

P.A. Casey, J.D. Koralek, N.C. Plumb, D.S. Dessau, P.W. Anderson. Accurate theoretical fits to laser-excited photoemission spectra in the normal phase of high-temperature superconductors. Nat. Phys. 4, 210 (2008).

https://doi.org/10.1038/nphys833

K. Weiss, T,M. Khoshgoftaar, D. Wang. A survey of transfer learning. J. Big. Data 3, 9 (2016).

https://doi.org/10.1186/s40537-016-0043-6

A.F. Kemper, M.A. Sentef, B. Moritz, T.P. Devereaux, J.K. Freericks. Review of the teoretical description of time-resolved angle-resolved photoemission spectroscopy in electron-phonon mediated superconductors. Ann. Phys. 529, 1600235 (2017).

https://doi.org/10.1002/andp.201600235

W. Zhang, C.L. Smallwood, C. Jozwiak, T.L. Miller, Y. Yoshida, H. Eisaki, D.-H. Lee, A. Lanzara. Signatures of superconductivity and pseudogap formation in nonequilibrium nodal quasiparticles revealed by ultrafast angleresolved photoemission. Phys. Rev. B 88, 245132 (2013).

https://doi.org/10.1103/PhysRevB.88.245132

C.L. Smallwood, W. Zhang, T.L. Miller, C. Jozwiak, C.H. Eisaki, D.-H. Lee, A. Lanzara.Time- and momentumresolved gap dynamics in Bi2Sr2CaCu2O8+δ . Phys. Rev. B 89, 115126 (2014).

R. Cort'es, L. Rettig, Y. Yoshida, H. Eisaki, M. Wolf, U. Bovensiepen. Momentum-resolved ultrafast electron dynamics in superconducting Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 107, 097002 (2011).

https://doi.org/10.1103/PhysRevLett.107.097002

E. Apostolidis, E. Adamantidou, A.I. Metsai, V. Mezaris, I. Patras. Video summarization using deep neural networks: A survey. arXiv:2101.06072.[cs.CV].

J.Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, G. Toderici. Beyond short snippets: Deep networks for video classification. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, June 7-12, 2015.

C. Orozco, E. Xamena, M. Buemi, J. Berlles. Human action recognition in videos using a robust CNN LSTM approach. Ciencia y Tecnolog'ia 21 (2020).

https://doi.org/10.18682/cyt.vi0.3288

A. Agga, A. Abbou, M. Labbadi, Y. El Houm, I. Hammou Ou Ali. CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production. Electric Power Systems Research 208, 107908 (2022).

https://doi.org/10.1016/j.epsr.2022.107908

V. Stanev, C. Oses, A.G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, I. Takeuchi. Machine learning modeling of superconducting critical temperature. Npj Comput. Mater. 4, 29 (2018).

https://doi.org/10.1038/s41524-018-0085-8

A.A. Kordyuk. Electronic band structure of optimal superconductors: From cuprates to ferropnictides and back again. Low Temp. Phys. 44, 477 (2018).

https://doi.org/10.1063/1.5037550

Yu.V. Pustovit, A.A. Kordyuk. Metamorphoses of electronic structure of FeSe-based superconductors (Review article). Low Temp. Phys. 42, 995 (2016).

https://doi.org/10.1063/1.4969896

S. Borisenko, A. Fedorov, A. Kuibarov, M. Bianchi, V. Bezguba, P. Majchrzak, P. Hofmann, P. Baumg¨artel, V. Voroshnin, Y. Kushnirenko, J. S'anchez-Barriga, A. Varykhalov, R. Ovsyannikov, I. Morozov, S. Aswartham. Fermi surface tomography. Nat. Commun. 13, 4132 (2022).

https://doi.org/10.1038/s41467-022-31841-z

S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. R¨uhl, C. Wolverton. The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies. Npj Comput. Mater. 1, 15010 (2015).

https://doi.org/10.1038/npjcompumats.2015.10

A. Wang, Y. Wang, Y. Chen. Hyperspectral image classification based on convolutional neural network and random forest. Remote Sens. Lett. 10, 1086 (2019).

https://doi.org/10.1080/2150704X.2019.1649736

G. Xu, M. Liu, Z. Jiang, D. S¨offker, W. Shen. Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning. Sensors 19, 1088 (2019).

https://doi.org/10.3390/s19051088

F.-L. Fan, J. Xiong, M. Li, G. Wang. On interpretability of artificial neural networks: A survey. IEEE trans. Radiat. Plasma Med. Sci. 5, 741 (2020).

https://doi.org/10.1109/TRPMS.2021.3066428

Y. Zhang, P. Tiˇno, A. Leonardis, K. Tang. A survey on neural network interpretability. IEEE Trans. Emerg. Top. Comput. Intell. 5, 726 (2021).

https://doi.org/10.1109/TETCI.2021.3100641

Q. Zhang, Y.N. Wu, C.-H. Zhu. Interpretable convolutional neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, June 18-23, 2018.

https://doi.org/10.1109/CVPR.2018.00920

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin. Attention is all you need. In: NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems Long Beach, California, USA December 4-9, 2017.

Chunwei Tian, Yong Xu, Zuoyong Li, Wangmeng Zuo, Lunke Fei, Hong Liu. Attention-guided CNN for image denoising. Neural Netw. 124, 117 (2020).

https://doi.org/10.1016/j.neunet.2019.12.024

Z. Baozhou, P. Hofstee, J. Lee, Z. Al-Ars. An attention module for convolutional neural networks. arXiv: 2108.08205.[cs.CV].

M.-I. Georgescu, R.T. Ionescu, Andreea-Iuliana Miron, Olivian Savencu, Nicolae-Catalin Ristea, Nicolae Verga, Fahad Shahbaz Khan. Multimodal multi-head convolutional attention with various kernel sizes for medical image super-resolution. arXiv:2204.04218.[eess.IV].

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv:2010.11929.[cs.CV].

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.[cs.CL].

C. Li, C. Zhang. Toward a Deeper understanding: RetNet viewed through convolution. arXiv:2309.05375.[cs.CL].

O. Uparkar, J. Bharti, R.K. Pateriya, R. Kumar Gupta, A. Sharma. Vision transformer outperforms deep convolutional neural network-based model in classifying X-ray images. Procedia Comput. Sci. 218, 2338 (2023).

https://doi.org/10.1016/j.procs.2023.01.209

Downloads

Опубліковано

2024-02-06

Як цитувати

Pustovit, Y., & Lytveniuk, Y. (2024). Методи обробки APRES-спектрів на основі нейронних мереж (оглядова стаття). Український фізичний журнал, 69(1), 53. https://doi.org/10.15407/ujpe69.1.53

Номер

Розділ

Структура речовини