Зменшення рекомбінаційних втрат у дифузійних приповерхневих емітерних шарах фоточутливих кремнієвих структур n+-p-p+
DOI:
https://doi.org/10.15407/ujpe68.9.628Ключові слова:
фоточутлива кремнiєва структура, приповерхневий шар, емiтер, рекомбiнацiйнi втрати, термообробки, шар двоокису кремнiюАнотація
Встановлено, що пiсля проведення операцiї дифузiї при створеннi n+-емiтера фоточутливих структур типу n+-p-p+ його приповерхневий шар має значнi структурнi пошкодження з пiдвищеними рекомбiнацiйними втратами. Проведено дослiдження впливу додаткових обробок у виглядi циклiв стравлювання-вирощування шару двоокису кремнiю на поверхнi емiтера при виготовленнi таких фоточутливих кремнiєвих структур на їхнi фотоелектричнi i рекомбiнацiйнi характеристики. Показано, що застосування таких додаткових обробок у процесi виготовлення фоточутливих кремнiєвих структур дозволяє ефективно зменшити рекомбiнацiйнi втрати i, тим самим, значно покращити фотоелектричнi параметри таких структур, в тому числi i їхню спектральну та порогову фоточутливiсть.
Посилання
M.A. Green. The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt: Res. Appl. 17, 183 (2009).
https://doi.org/10.1002/pip.892
K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cells. IEEE J. Photovolt. 4, 1433 (2014).
https://doi.org/10.1109/JPHOTOV.2014.2352151
A. Augusto, J. Karas, P. Balaji, S.G. Bowden, R.R. King. Exploring the practical efficiency limit of silicon solar cells using thin solar-grade substrates. J. Mater. Chem. A 8, 16599 (2020).
https://doi.org/10.1039/D0TA04575F
D. Yan, S.P. Phang, Y. Wan, C. Samundsett, D. Macdonald, A. Cuevas. High efficiency n-type silicon solar cells with passivating contacts based on PECVD silicon films doped by phosphorus diffusion. Solar Energ. Mater. Sol. Cells 193, 80 (2019).
https://doi.org/10.1016/j.solmat.2019.01.005
T.N. Truong, D. Yan, C. Samundsett, R. Basnet, M. Tebyetekerwa, L. Li, F. Kremer, A. Cuevas, D. Macdonald, H.T. Nguyen. Hydrogenation of phosphorus-doped polycrystalline silicon films for passivating contact solar cells. ACS Appl. Mater. Interf. 11, 5554 (2019).
https://doi.org/10.1021/acsami.8b19989
W. Chen, J. Stuckelberger, W. Wang, S.P. Phang, D. Kang, C. Samundsett, D. MacDonald, A. Cuevas, L. Zhou, Y. Wan, D. Yan. Influence of PECVD deposition power and pressure on phosphorus-doped polysilicon passivating contacts. IEEE J. Photovolt. 10, 1239 (2020).
https://doi.org/10.1109/JPHOTOV.2020.3001166
A. Richter, H. Patel, C. Reichel, J. Benick, S.W. Glunz. Improved silicon surface passivation by ALD Al2O3/SiO2 multilayers with in-situ plasma treatments. Adv. Mater. Interfaces 10, 2202469 (2023).
https://doi.org/10.1002/admi.202202469
L. Helmich, D.C. Walter, R. Falster, V.V. Voronkov, J. Schmidt. Impact of hydrogen on the boron-oxygen-related lifetime degradation and regeneration kinetics in crystalline silicon. Sol. Energ. Mater. Sol. Cells 232, 111340 (2021).
https://doi.org/10.1016/j.solmat.2021.111340
A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, S.W. Glunz. n-Type Si solar cells with passivating electron contact: Identifying sources for effciency limitations by wafer thickness and resistivity variation. Sol. Energ. Mater. Sol. Cells 173, 96 (2017).
https://doi.org/10.1016/j.solmat.2017.05.042
B.E. Deal, M. Sklar, A.S. Grove, E.H. Snow. Characterization of surface state charge of thermally oxidized silicon. J. Electrochem. Soc. 114, 266 (1967).
https://doi.org/10.1149/1.2426565
V.G. Litovchenko, A.P. Gorban'. Fundamentals of Physics of Microelectronic Systems Metal-insulator-semiconductor (Naukova Dumka, 1978) (in Russian).
H. Dib, Z. Benamara, T. Mohammed-Brahim, H. Mazari, N. Benseddik. Influence of the thermal annealing on the MOS^P structure. Sensor Lett. 7, 765 (2009).
https://doi.org/10.1166/sl.2009.1145
K. Kayed, D.B. Kurd. The effect of annealing temperature on the structural and optical properties of Si/SiO2 composites synthesized by thermal oxidation of silicon wafers. Silicon 14, 5157 (2022).
https://doi.org/10.1007/s12633-021-01307-w
M.A. Green. Photovoltaics: Technology overview. Energ. Policy 28, 989 (2000).
https://doi.org/10.1016/S0301-4215(00)00086-0
V.P. Kostylov. Photoelectric Energy Conversion Processes in Silicon Multilayer Structures with Diffusion-Field Barriers. Doctoral dissertation (V. Lashkaryov Institute of Semiconductor Physics, 2009) (in Ukrainian).
G.C. Salter, R.E. Thomas. Silicon solar cells using natural inversion layers found in thermally oxidized p-silicon. Solid State Electron. 20, 95 (1977).
https://doi.org/10.1016/0038-1101(77)90056-9
M.A. Green, F.D. King, J. Shewchun. Minority carrier MIS tunnel diodes and their application to electron-and photovoltaic energy conversion. I. Theory. Solid-State Electron. 17, 551 (1974).
https://doi.org/10.1016/0038-1101(74)90172-5
Certificate of recognition of measuring capabilities of the Center for testing photo-conversion devices and photovoltaic arrays of the V.E. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine, No. PT-448/21, issued on November 09, 2021 by the State Enterprise "All-Ukrainian State Scientific and Production Center for Standardization, Metrology, Certification, and Consumer Rights Protection" of the Ministry of Economy of Ukraine.
M.I. Klyui, V.P. Kostylyov, A.V. Makarov, V.V. Chernenko. Metrological aspects of testing photovoltaic solar energy converters. Sklad. Syst. Protses. 1, 42 (2007) (in Ukrainian).
A.V. Sachenko, Yu.V. Kryuchenko, V.P. Kostylyov, I.O. Sokolovskyi, A. Abramov, A.V. Bobyl, I.E. Panaiotti, E.I. Terukov. Method for optimizing the parameters of heterojunction photovoltaic cells based on crystalline silicon. Semiconductors 50, 257 (2016).
https://doi.org/10.1134/S1063782616020226
A.V. Sachenko, R.M. Korkishko, V.P. Kostylyov, N.R. Kulish, I.O. Sokolovskyi, A.I. Skrebtii. Simulation of the real efficiencies of high-efficiency silicon solar cells. Semiconductors 50, 523 (2016).
https://doi.org/10.1134/S1063782616040205
A.V. Sachenko, A.I. Shkrebtii, R.M. Korkishko, V.P. Kostylyov, N.R. Kulish, I.O. Sokolovskyi. Features of photoconversion in highly efficient silicon solar cells. Semiconductors 49, 264 (2015).
https://doi.org/10.1134/S1063782615020189
T. Trupke, M.A. Green, P. W¨urfel, P.P. Altermatt, A. Wang, J. Zhao, R. Corkish. Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon. J. Appl. Phys. 94, 4930 (2003).
https://doi.org/10.1063/1.1610231
A.P. Gorban', V.A. Zuev, V.P. Kostylyov, A.V. Sachenko, A.A. Serba, V.V. Chernenko. About the temperature dependences of the equilibrium and non-equilibrium parameters in silicon. Optoelektron. Poluprov. Tekhn. 36, 161 (2001) (in Russian).
A.V. Sachenko, V.P. Kostylyov, V.M. Vlasiuk, I.O. Sokolovskyi, M.A. Evstigneev, T.V. Slusar, V.V. Chernenko. Modeling of characteristics of highly efficient textured solar cells based on c-silicon. The influence of recombination in the space charge region. Semicond. Phys. Quant. Electron. Optoelectron. 26, 005 (2023).
A.V. Sachenko, V.P. Kostylyov, V.M. Vlasiuk, I.O. Sokolovskyi, M. Evstigneev, D.F. Dvernikov, R.M. Korkishko, V.V. Chernenko. Space charge region recombination, nonradiative exciton recombination and the band-narrowing effect in high-efficiency silicon solar cells. Semicond. Phys. Quant. Electron. Optoelectron. 26, 127 (2023).
K.D. Glinchuk, N.M. Litovchenko, Z.A. Salnik, S.I. Skryl. Effect of heat treatment on the minority carrier lifetime in oxygen-containing silicon. Phys. Status Solidi A 79, 159 (1983).
https://doi.org/10.1002/pssa.2210790253
A.P. Gorban', V.P. Kostylyov, V.V. Chernenko. Genesis of generational and charge characteristics of the Si-SiO2 system during the manufacture of KMOS GIS. Optoelektron. Poluprov. Tekhn. 24, 61 (1992) (in Russian).
D.A. Clugston, P.A. Basore. PC1D Version 5: 32-bit solar cell simulation on personal computers. In: Proceedings of the 26th IEEE Photovoltaic Specialists Conference (PVSC 1997), September 1997, Anaheim, CA, USA (IEEE, 1997), p. 207.
A.P. Gorban', V.P. Kostylyov, V.G. Litovchenko, I.B. Nikolin, A.A. Serba. The "self-gettering" effect at the formation of diffusion p-n-junctions in silicon. Mikroelektronika 22, 22 (1993) (in Russian).
A. Cuevas, D. MacDonald, M. Kerr, C. Samundsett, A. Sloan, S. Shea, A. Leo, M. Mrcarica, S. Winderbaum. Evidence of impurity gettering by industrial phosphorus diffusion. In: Proceedings of the 28 IEEE Photovoltaic Specialists Conference (PVSC 2000), Anchorage, Alaska, USA, September 15-22, 2000 (IEEE, 2000), p. 244.
R.L. Meek, T.E. Seidel. Enhanced solubility and ion pairing of Cu and Au in heavily doped silicon at high temperatures. J. Phys. Chem. Solids 36, 731 (1975).
https://doi.org/10.1016/0022-3697(75)90096-7
L. Baldi, G. Cerofolini, G. Ferla. Heavy-metal gettering in silicon-device processing. J. Electrochem. Soc. 127, 164 (1980).
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.