Synthesis and Investigation of the Properties of Organic-Inorganic Perovskite Films with Non-Contact Methods

Authors

  • V.P. Kostylyov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • A.V. Sachenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine https://orcid.org/0000-0003-0170-7625
  • V.M. Vlasiuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine https://orcid.org/0000-0001-6352-0423
  • I.O. Sokolovskyi V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine https://orcid.org/0000-0002-7072-6670
  • S.D. Kobylianska V.I. Vernadsky Institute of General and Inorganic Chemistry, Nat. Acad. of Sci. of Ukraine
  • P.V. Torchyniuk V.I. Vernadsky Institute of General and Inorganic Chemistry, Nat. Acad. of Sci. of Ukraine
  • O.I. V’yunov V.I. Vernadsky Institute of General and Inorganic Chemistry, Nat. Acad. of Sci. of Ukraine https://orcid.org/0000-0001-7420-2287
  • A.G. Belous V.I. Vernadsky Institute of General and Inorganic Chemistry, Nat. Acad. of Sci. of Ukraine https://orcid.org/0000-0001-7808-3828

DOI:

https://doi.org/10.15407/ujpe66.5.429

Keywords:

surface photovoltage, perovskite film, diffusion length, transmission spectra, Urbach effect

Abstract

We present the results of studies of the photoelectric properties of perovskite CH3NH3PbI2.98Cl0.02 films deposited on a glass substrate using the spin-coating method. The unit cell parameters of perovskite are determined, by using X-ray diff ractometry. It is shown that the fi lm morphology represents a net of non-oriented needle-like structures with significant roughness and porosity. In order to investigate the properties of the films obtained, we used non-contact methods such as transmission and reflection measurements and the measurements of the spectral characteristics of the small-signal surface photovoltage. The non-contact method of spectral characteristics of the small-signal surface photovoltage and the transmission method reveal information about the external quantum yield in the films studied and about the diffusion length of minority carriers in the perovskite films. As a result of this analysis, it has been established that the films are naturally textured, and their bandgap is 1.59 eV. It is shown that, in order to correctly determine the absorption coefficient and the bandgap values, the Urbach effect should be accounted for. The diffusion length of minority carriers is longer than the fi lm thickness, which is equal to 400 nm. The films obtained are promising materials for solar cells and optoelectronic devices.

References

M.A. Green, A. Ho-Baillie, H.J. Snaith. The emergence of perovskite solar cells. Nature Photonics 8, 7 (2014).

https://doi.org/10.1038/nphoton.2014.134

M.A. Green, Y. Hishikawa, E.D. Dunlop et al. Solar cell efficiency tables (Version 53). Prog. Photovolt. Res. Appl. 27, (2019).

https://doi.org/10.1002/pip.3102

M.A. Green. Third Generation Photovoltaics. Advanced Solar Energy Conversion. (Springer, 2006).

W.S. Yang et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 6240 (2015).

https://doi.org/10.1126/science.aaa9272

D. Song et al. Managing carrier lifetime and doping property of lead halide perovskite by postannealing processes for highly efficient perovskite solar cells. J. Phys. Chem. C 119, 40 (2015).

https://doi.org/10.1021/acs.jpcc.5b06859

M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science 338, 2 (2012).

https://doi.org/10.1126/science.1228604

B.-E. Cohen, S. Gamliel, L. Etgar. Parameters influencing the deposition of methylammonium lead halide iodide in

hole conductor free perovskite-based solar cells. APL Materials 2, 8 (2014).

J.-H. Im, I.-H. Jang, N. Pellet, M. Gratzel, N.-G. Park. Growth of CHSNHSPblS cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotech. 9, 11 (2014).

https://doi.org/10.1038/nnano.2014.181

J. Burschka et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 7458 (2013).

https://doi.org/10.1038/nature12340

J.H. Kim, S.T. Williams, N. Cho, C.C. Chueh, A.K.Y. Jen. Enhanced environmental stability of planar heterojunction

perovskite solar cells based on blade-coating. Adv. Energy Mater. 5, 4 (2014).

K. Hwang et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 7 (2015).

https://doi.org/10.1002/adma.201404598

J. Borchert, H. Boht, W. Franzel, R. Csuk, R. Scheer, and P. Pistor. Structural investigation of co-evaporated methyl ammonium lead halide perovskite films during growth and thermal decomposition using different PbX 2 (X = I, Cl) precursors. J. Mater. Chem. A 3, 39 (2015).

https://doi.org/10.1039/C5TA04944J

J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park. 6.5% efficient perovskite quantum-dot-sensitized solar cell.

Nanoscale 3, 10 (2011).

L. Barnea-Nehoshtan, S. Kirmayer, E. Edri, G. Hodes, D. Cahen. Surface photovoltage spectroscopy study of organo-lead perovskite solar cells. J. Phys. Chem. Lett. 5, (2014).

https://doi.org/10.1021/jz501163r

Th. Dittrich, F. Lang, O. Shargaieva, J. Rappich, N.H. Nickel, E. Unger, B. Rech. Diff usion length of photo-generated charge carriers in layers and powders of CH3NH3PbI3 perovskite. Appl. Phys. Lett. 109, 073901 (2016).

https://doi.org/10.1063/1.4960641

J. Wang, E. Motaharifar, L.N.S. Murthy, et al. Revealing lattice and photocarrier dynamics of high-quality MAPbBr3 single crystals by far infrared reflection and surface photovoltage spectroscopy. J. Appl. Phys. 125, 025706 (2019).

https://doi.org/10.1063/1.5072794

L. Kronik, Y. Shapira. Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 37, 1 (1999).

https://doi.org/10.1016/S0167-5729(99)00002-3

D.K. Schroder. Surface voltage and surface photovoltage: history, theory and applications. Meas. Sci. Technol. 12, R16 (2001).

https://doi.org/10.1088/0957-0233/12/3/202

J. Qiu et al. All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-

dimensional TiO2 nanowire arrays. Nanoscale 5, 8 (2013).

A.G. Belous, O.I. V'yunov, S.D. Kobylyanskaya, A.A. Ishchenko, A.V. Kulinich. Influence of synthesis conditions on the morphology and spectral-luminescent properties of fi lms of organic-inorganic perovskite

CH3NH3PbI2.98Cl0.02. Rus. J. General Chem. 88, 1 (2018).

ASTM Standard F391-90a, "Standard Test Method for Minority-Carrier Diff usion Length in Silicon by Measurement of Steady-State Surface Photovoltage", 1996 Annual Book of ASTM Standards (Am. Soc. Test. Mat., 1996).

Y. Kawamura, H. Mashiyama, K. Hasebe. Structural study on cubic-tetragonal transition of CH3NH3PbI3. J. Phys. Soc. of Japan 71, 7 (2002).

https://doi.org/10.1143/JPSJ.71.1694

A.V. Sachenko et al. Recombination characteristics of single-crystalline silicon wafers with a damaged near- surface layer. Ukr. J. Phys. 58, 2 (2013).

C. Honsberg, S. Bowden. (30.10.2018). Quantum Efficiency (PVEducation ed.) [Internet]. Available: https://

www.pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency.

T. Tiedje, E. Yablonovitch, G.D. Cody, B.G. Brooks. Limiting efficiency of silicon solar cells. IEEE Transactions on Electron Devices 31, 5 (1984).

https://doi.org/10.1109/T-ED.1984.21594

M.A. Green. Lambertian light trapping in textured solar cells and light-emitting diodes: Analytical solutions. Prog. Photovolt: Res. Appl. 10, (2002).

https://doi.org/10.1002/pip.404

S. Schafer, R. Brendel. Accurate calculation of the absorptance enhances effi ciency limit of crystalline silicon solar cells with Lambertian light trapping. IEEE J. Photovoltaics 8, 4 (2018).

https://doi.org/10.1109/JPHOTOV.2018.2824024

A. Fahrenbruch, R. Bube. Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion (Elsevier, 2012)

[ISBN: 978-0122476808].

E. Yablonovitch. Statistical ray optics. JOSA 72, 7 (1982).

https://doi.org/10.1364/JOSA.72.000899

A.V. Sachenko et al. Peculiarities of photoconversion efficiency modeling in perovskite solar cells. Tech. Phys. Lett. 43, 7 (2017).

https://doi.org/10.1134/S1063785017070240

A.V. Sachenko et al. The effect of base thickness on photoconversion efficiency in textured silicon-based solar cells. Tech. Phys. Lett. 44, 10 (2018).

https://doi.org/10.1134/S1063785018100139

K. Seeger. Semiconductor Physics (Springer Science & Business Media, 2004). https://doi.org/10.1007/978-3-662-09855-4

Stefaan De Wolf, J. Holovsky, S.-J. Moon, P. Loper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, (2014). https://doi.org/10.1021/jz500279b

J.D. Joannopoulos, G. Lucovsky. The Physics of Hydrogenated Amorphous Silicon II: Electronic and Vibrational Properties (Springer Science and Business Media, 1984). https://doi.org/10.1007/3-540-12807-7

C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 10 (2013). https://doi.org/10.1002/adma.201305172

V.P. Kostylyov, V.G. Lytovchenko, A.V. Sachenko, T.V. Slusar, V.V. Chernenko. Features of solar cells and solar silicon wafers surface photovoltage spectral dependences in the short-wave absorption region, in Proceedings 28 European Photovoltaic Solar Energy Conf. and Exhib. (Paris, France, 2013), p. 1715.

Downloads

Published

2021-05-28

How to Cite

Kostylyov, V., Sachenko, A., Vlasiuk, V., Sokolovskyi, I., Kobylianska, S., Torchyniuk, P., V’yunov, O., & Belous, A. (2021). Synthesis and Investigation of the Properties of Organic-Inorganic Perovskite Films with Non-Contact Methods. Ukrainian Journal of Physics, 66(5), 429. https://doi.org/10.15407/ujpe66.5.429

Issue

Section

Surface physics