Специфічна дія мікрохвиль на водний розчин родаміну 6G за даними флуоресцентного аналізу

Автор(и)

  • L.A. Bulavin Taras Shevchenko National University of Kyiv
  • N.V. Gaiduk Taras Shevchenko National University of Kyiv
  • M.O. Redkin Taras Shevchenko National University of Kyiv
  • A.V. Yakunov Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe66.3.265

Ключові слова:

мiкрохвильове нагрiвання, флуоресценцiя, органiчний барвник, перколяцiйна модель

Анотація

Вивчено вплив мiкрохвиль з частотою 2,45 ГГц на флуоресценцiю водного розчину органiчного барвника родамiну 6G. Зафiксовано вiдхилення в динамiцi змiни вiдносної iнтенсивностi та пiкової довжини хвилi пiд час поглинання мiкрохвиль, а також пiд час подальшого охолодження розчину порiвняно iз контактним нагрiванням. Результати iнтерпретовано в рамках перколяцiйної моделi. Передбачається, що електрична складова електромагнiтної хвилi може безпосередньо впливати на структуру перколяцiйного кластера, який формується сiткою водневих зв’язкiв.

Посилання

A. Bekal, A.M. Hebbale, M. Srinath. Review on material processing through microwave energy. IOP Conf. Ser.: Mater. Sci. Eng. 376, 012079 (2018).

https://doi.org/10.1088/1757-899X/376/1/012079

R. Walczak, J. Dziuban. "Microwave memory effect" of activated water and aqueous KOH solution. In: Proceedings of the 15th International Conference on Microwaves, Radar and Wireless Communications, 17-19 May 2004, Warsaw (IEEE, 2004).

A. Copty, Y. Neve-Oz, I. Barak, M. Golosovsky, D. Davidov. Evidence for a specific microwave radiation effect on the green fluorescent protein. Biophys. J. 91, 1413 (2006).

https://doi.org/10.1529/biophysj.106.084111

Huang Kama, Xiaoqing Yang, Wei Hua, Guozhu Jia, Lijun Yang. Experimental evidence of a microwave non-thermal effect in electrolyte aqueous solutions. New J. Chem. 33, 1486 (2009).

https://doi.org/10.1039/b821970b

G. Morariu, M. Miron, A.-M. Mita, L.-V. Stan. Microwaves electromagnetic field influence on pH. Theoretical and experimental results. Rev. Air Force Acad. No. 1, 45 (2009).

H. Parmar, A. Masahiro, K. Yushin, A. Yusuke, Ph. Chi, P. Vishnu, E. Geoffrey. Influence of microwaves on the water surface tension. Langmuir 30, 9875 (2014).

https://doi.org/10.1021/la5019218

A. Yakunov, M. Biliy, A. Naumenko. Long-term structural modification of water under microwave irradiation: Low-

frequency Raman spectroscopic measurements. Adv. Opt. Technol. 2017, 1 (2017).

https://doi.org/10.1155/2017/5260912

J. Jacob, L. Chia, F. Boey. Thermal and non-thermal interaction of microwave radiation with materials. J. Mater. Sci. 30, 5321 (1995).

https://doi.org/10.1007/BF00351541

D. Stuerga, P. Gaillard. Microwave athermal effects in chemistry: A myth's autopsy: Part I: Historical background

and fundamentals of wave-matter interaction. J. Microw. Power Electromagn. Ener. 31, 87 (1996).

https://doi.org/10.1080/08327823.1996.11688299

N. Kuhnert. Microwave-assisted reactions in organic synthesis: Are there any nonthermal microwave effects? Angew. Chem. Int. Ed. 41, 1863 (2002).

https://doi.org/10.1002/1521-3773(20020603)41:11<1863::AID-ANIE1863>3.0.CO;2-L

C. Kappe, B. Pieber, D. Dallinger. Microwave effects in organic synthesis: Myth or reality? Angew. Chem. Int. Ed. 52, 1088 (2013).

https://doi.org/10.1002/anie.201204103

Boon Wong. Understanding nonthermal microwave effects in materials processing - A classical non-quantum approach. In: Processing and Properties of Advanced Ceramics and Composites VI: Ceramic Transactions, Vol. 249 (The American Ceramic Society, 2014), p. 329.

https://doi.org/10.1002/9781118995433.ch32

P. Bana, I. Greiner. Interpretation of the effects of microwaves. In Milestones in Microwave Chemistry (Springer, 2016), Ch. 4.

https://doi.org/10.1007/978-3-319-30632-2_4

J. Lou, T.M. Finegan, P. Mohsen, T.A. Hatton, P.E. Laibinis. Fluorescence-based thermometry: Principles and applications. Rev. Analyt. Chem. 18, 235 (1999).

https://doi.org/10.1515/REVAC.1999.18.4.235

L. Levshin, A. Saletskii, V. Yuzhakov. Forms of aggregation of molecules of rhodamine dyes in mixtures of polar and nonpolar solvents. Zh. Strukt. Khim. 26, 95 (1985) (in Russian).

https://doi.org/10.1007/BF00748362

A. Vasylieva, I. Doroshenko, Ye. Vaskivskyi, Ye. Chernolevska, V. Pogorelov. FTIR study of condensed water structure. J. Mol. Struct. 1167, 232 (2018).

https://doi.org/10.1016/j.molstruc.2018.05.002

N. Kuzkova, O. Popenko, A. Yakunov. Application of temperature-dependent fluorescent dyes to the measurement of millimeter wave absorption in water applied to biomedical experiments. J. Biomed. Imag. 2014, 1 (2014).

https://doi.org/10.1155/2014/243564

D. Babich, A. Kulsky, V. Pobiedina, A. Yakunov. Application of fluorescent dyes for some problems of bioelectromagnetics. In: Proc. SPIE 9887, Biophotonics: Photonic Solutions for Better Health Care V 9887, 988735 (2016).

https://doi.org/10.1117/12.2227373

J.R. Lakowicz. Principles of Fluorescence Spectroscopy (Springer, 2006).

https://doi.org/10.1007/978-0-387-46312-4

V. Degoda, A. Gumenyuk, I. Zakharchenko, O. Svechnikova. The features of the hyperbolic law of phosphorescence. J. Phys. Stud. 15, 1 (2011).

https://doi.org/10.30970/jps.15.3301

S. Viznyuk, P. Pashinin. The effect of temperature combustion luminescence in water solution of rhodamine 6G. JETP Lett. 47, 190 (1988).

K. Kristinaityte, A. Marsalka, L. Dagys, K. Aidas, I. Doroshenko, Y. Vaskivskyi, Y. Chernolevska, V. Pogorelov, N.R. Valeviciene, V. Balevicius. NMR, Raman, and DFT study of lyotropic chromonic liquid crystals of biomedical interest: Tautomeric equilibrium and slow self-assembling in sunset yellow aqueous solutions. J. Phys. Chem. B 122, 3047 (2018).

https://doi.org/10.1021/acs.jpcb.8b00350

L. Bulavin, M. Biliy, A. Maksymov, A. Yakunov. Peculiarities of the low-frequency Raman scattering by supramolecular inhomogeneties of hydrogen-bonded liquids. Ukr. J. Phys. 55, 966 (2010).

N. Kuzkova, A. Yakunov, M. Bilyi. Low-frequency Raman spectroscopic monitoring of supramolecular structure in H-bonded liquids. Adv. Opt. Technol. 2014, 1 (2014).

https://doi.org/10.1155/2014/798632

A. Yakunov, P. Yakunov. Slow dynamics of water structure in cellular automata model. In: Proceedings of the International Conference "Physics of Liquid Matter: Modern Problems" (2004), p. 140.

H. Hinrikus, M. Bachmann. J. Lass. Understanding physical mechanism of low-level microwave radiation effect. Int. J. Radiat. Biol. 94, 877 (2018).

https://doi.org/10.1080/09553002.2018.1478158

N. Domnina, A. Korolev, A. Potapov, A. Saletskii. Influence of microwave radiation on the association processes

of rhodamine 6G molecules in aqueous solutions. J. Appl. Spectrosc. 72, 33 (2005).

https://doi.org/10.1007/s10812-005-0027-3

V. Pogorelov, I. Doroshenko, G. Pitsevich, V. Balevicius, V. Sablinskas, B. Krivenko. L.G.M. Pettersson. From clusters to condensed phase-FT IR studies of water. J. Mol. Liq. 235, 7 (2017).

https://doi.org/10.1016/j.molliq.2016.12.037

Опубліковано

2021-04-07

Як цитувати

Bulavin, L., Gaiduk, N., Redkin, M., & Yakunov, A. (2021). Специфічна дія мікрохвиль на водний розчин родаміну 6G за даними флуоресцентного аналізу. Український фізичний журнал, 66(3), 265. https://doi.org/10.15407/ujpe66.3.265

Номер

Розділ

Напівпровідники і діелектрики