Магнітні властивості композитних наночастинок Fe3O4/CoFe2O4 з архітектурою ядро/оболонка

Автор(и)

  • V. O. Zamorskyi Institute of Magnetism, Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science of Ukraine
  • Ya. M. Lytvynenko Institute of Magnetism, Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science of Ukraine
  • A. M. Pogorily Institute of Magnetism, Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science of Ukraine
  • A. I. Tovstolytkin Institute of Magnetism, Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science of Ukraine, Taras Shevchenko National University of Kyiv, Faculty of Radiophysics, Electronics, and Computer Systems
  • S. O. Solopan V.I. Vernadskyi Institute of General and Inorganic Chemistry, Nat. Acad. of Sci. of Ukraine
  • A. G. Belous V.I. Vernadskyi Institute of General and Inorganic Chemistry, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe65.10.904

Ключові слова:

наночастинки, сore/shell архiтектура, ядро i оболонка, намагнiченiсть, температура блокування

Анотація

Проведено дослiдження магнiтних властивостей двох типiв наночастинок: наночастинок з архiтектурою ядро/оболонка (core/shell) Fe3O4/CoFe2O4 з товщиною ядра ∼6,3 нм i змiнною товщиною оболонки (0; 1,0; 2,5 нм) та сумiшi окремих наночастинок Fe3O4 i CoFe2O4 у спiввiдношеннях, що вiдповiдають концентрацiям компонент наночастинок ядро/оболонка. Аналiз результатiв магнiтометрiї показує, що покриття магнiтних наночастинок оболонкою приводить до двох одночасних ефектiв: модифiкацiї параметрiв мiжфазної границi мiж ядром та оболонкою та трансформацiї параметрiв як вихiдної наночастинки, так i її оболонки, в результатi чого core/shell наночастинки набувають нових характеристик, якi не характернi нi для ядра (Fe3O4), нi для оболонки (CoFe2O4), нi для механiчної сумiшi на їх основi. Отриманi результати вiдкривають шляхи до оптимiзацiї та адаптацiї параметрiв core/shell наночастинок на основi феритiв-шпiнелей для їх використання в рiзних технологiчних i бiомедичних галузях.

Посилання

P. M'elinon, S. Begin-Colin, J.L. Duvail, F. Gauffre, N.H. Boime, G. Ledoux, J. Plain, P. Reiss, F. Silly, B. Warot-Fonrose. Engineered inorganic core/shell nanoparticles. Phys. Rep. 543, 163 (2014). https://doi.org/10.1016/j.physrep.2014.05.003

S.H. Noh,W. Na, J.T. Jang, J.H. Lee, E.J. Lee, S.H. Moon, Y. Lim, J.S. Shin, J. Cheon. Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett. 12, 3716 (2012). https://doi.org/10.1021/nl301499u

Q. Song, Z.J. Zhang. Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture. J. Am. Chem. Soc. 134, 10182 (2012). https://doi.org/10.1021/ja302856z

J.H. Lee, J.T. Jang, J.S. Choi, S.H. Moon, S.H. Noh, J.W. Kim, J.G. Kim, I.S. Kim, K.I. Park, J. Cheon. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature Nanotech. 6, 418 (2011). https://doi.org/10.1038/nnano.2011.95

A.A. Sattar, H.M. El-Sayed, I. Alsuqia. Structural and magnetic properties of CoFe2O4/NiFe2O4 core/shell nanocomposite prepared by the hydrothermal method. J. Magn. Magn. Mater. 395, 89 (2015). https://doi.org/10.1016/j.jmmm.2015.07.039

A.H. Habib, C.L. Ondeck, P. Chaudhary, M.R. Bockstaller, M.E. McHenry. Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J. Appl. Phys. 103, 07A307 (2008). https://doi.org/10.1063/1.2830975

R. Ghosh, L. Pradhan, Y.P. Devi, S.S. Meena, R. Tewari, A. Kumar, S. Sharma, N.S. Gajbhiye, R.K. Vatsa, B.N. Pandey, R.S. Ningthoujam. Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J. Mater. Chem. 21, 13388 (2011). https://doi.org/10.1039/c1jm10092k

D. Polishchuk, N. Nedelko, S. Solopan, A. ' Slawska-Waniewska, V. Zamorskyi, A. Tovstolytkin, A. Belous. Profound interfacial effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 core/shell nanoparticles. Nanoscale Res. Lett. 13, 67 (2018). https://doi.org/10.1186/s11671-018-2481-x

T. Gaudisson, R. Sayed-Hassan, N. Yaacoub, G. Franceschin, S. Nowak, J.M. Gren'eche, N. Menguy, P. Sainctavit, S. Ammar. On the exact crystal structure of exchangebiased Fe3O4-CoO nanoaggregates produced by seed-mediated growth in polyol. Cryst. Eng. Commun. 18, 3799 (2016). https://doi.org/10.1039/C6CE00700G

O.V. Yelenich, S.O. Solopan, J.M. Gren'eche, A.G. Belous. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core-shell structures. Solid State Sci. 46, 19 (2015). https://doi.org/10.1016/j.solidstatesciences.2015.05.011

N. Flores-Martinez, G. Franceschin, T. Gaudisson, P. Beaunier, N. Yaacoub, J.-M. Gren'eche, R. Valenzuela, S. Ammar. Giant exchange-bias in polyol-made CoFe2O4-CoO core-shell like nanoparticles. Part. Part. Syst. Char. 35, 1800290 (2018). https://doi.org/10.1002/ppsc.201800290

O.V. Yelenich, S.O. Solopan, T.V. Kolodiazhnyi, J.M. Gren'eche, A.G. Belous. Synthesis of iron oxide nanoparticles by different methods and study of their properties. Solid State Phenom. 230, 108 (2015). https://doi.org/10.4028/www.scientific.net/SSP.230.108

G. Franceschin, T. Gaudisson, N. Menguy, B.C. Dodrill, N. Yaacoub, J.M. Gren'eche, R. Valenzuela, S. Ammar. Exchange-biased Fe3−xO4-CoO granular composites of different morphologies prepared by seed-mediated growth in polyol: From core-shell to multicore embedded structures. Part. Part. Syst. Char. 35, 1800104 (2018). https://doi.org/10.1002/ppsc.201800104

S. Mornet, C. Elissalde, V. Hornebecq, O. Bidault, E. Duguet, A. Brisson, M. Maglione. Controlled growth of silica shell on Ba0.6Sr0.4TiO3 nanoparticles used as precursors of ferroelectric composites. Chem. Mater. 17, 4530 (2005). https://doi.org/10.1021/cm050884r

S. Chikazumi. Physics of Ferromagnetism (Oxford Univ. Press, 1997).

Y.O. Tykhonenko-Polishchuk, N.N. Kulyk, O.V. Yelenich, V. Beˇcyte, K.Maˇzeika, V.M. Kalita, A.G. Belous, A.I. Tovstolytkin. Quasi-static magnetic properties and high-frequency energy losses in CoFe2O4 nanoparticles. Low Temp. Phys. 42, 470 (2016). https://doi.org/10.1063/1.4955089

N. Daff'e, F. Choueikani, S. Neveu, M.A. Arrio, A. Juhin, P. Ohresser, V. Dupuis, P. Sainctavit. Magnetic anisotropies and cationic distribution in CoFe2O4 nanoparticles prepared by co-precipitation route: Influence of particle size and stoichiometry. J. Magn. Magn. Mater. 460, 243 (2018). https://doi.org/10.1016/j.jmmm.2018.03.041

J. Carrey, B. Mehdaoui, M. Respaud. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J. Appl. Phys. 109, 083921 (2011). https://doi.org/10.1063/1.3551582

Q. Zhang, I. Castellanos-Rubio, R. Munshi, I. Orue, B. Pelaz, K.I. Gries, W.J. Parak, P. del Pino, A. Pralle. Model driven optimization of magnetic anisotropy of exchange-coupled core-shell ferrite nanoparticles for maximal hysteretic loss. Chem. Mater. 27, 7380 (2015). https://doi.org/10.1021/acs.chemmater.5b03261

O. Masala, D. Hoffman, N. Sundaram, K. Page, T. Proffen, G. Lawes, R. Seshadri. Preparation of magnetic spinel ferrite core/shell nanoparticles: Soft ferrites on hard ferrites and vice versa. Solid State Sci. 8, 1015 (2006). https://doi.org/10.1016/j.solidstatesciences.2006.04.014

V.M. Kalita, D.M. Polishchuk, D.G. Kovalchuk, A.V. Bodnaruk, S.O. Solopan, A.I. Tovstolytkin, S.M. Ryabchenko, A.G. Belous, Interplay between superparamagnetic and blocked behavior in an ensemble of lanthanum-strontium manganite nanoparticles. Phys. Chem. Chem. Phys. 19, 27015 (2017). https://doi.org/10.1039/C7CP05547A

V.M. Kalita, A.I. Tovstolytkin, S.M. Ryabchenko, O.V. Yelenich, S.O. Solopan, A.G. Belous. Mechanisms of AC losses in magnetic fluids based on substituted manganites. Phys. Chem. Chem. Phys. 17, 18087 (2015). https://doi.org/10.1039/C5CP02822A

S. Bedanta, A. Barman, W. Kleemann, O. Petracic, T. Seki. Magnetic nanoparticles: A subject for both fundamental research and applications. J. Nanomater. 2013, 952540 (2013). https://doi.org/10.1155/2013/952540

C. Antoniak, M. Farle. Magnetism at the nanoscale: The case of FePt. Mod. Phys. Lett. B 21, 1111 (2007). https://doi.org/10.1142/S0217984907013821

O. Yelenich, S. Solopan, T. Kolodiazhnyi, Y. Tykhonenko, A. Tovstolytkin, A. Belous. Magnetic properties and ac losses in AFe2O4 (A = Mn, Co, Ni, Zn) nanoparticles synthesized from nonaqueous solution. J. Chem. 2015, 532198 (2015). https://doi.org/10.1155/2015/532198

S.O. Solopan, N. Nedelko, S. Lewi'nska, A. ' Slawska-Waniewska, V.O. Zamorskyi, A.I. Tovstolytkin, A.G. Belous. Core/shell architecture as an efficient tool to tune DC magnetic parameters and AC losses in spinel ferrite nanoparticles. J. Alloys Compd. 788, 1203 (2019). https://doi.org/10.1016/j.jallcom.2019.02.276

Опубліковано

2020-10-09

Як цитувати

Zamorskyi, V. O., Lytvynenko, Y. M., Pogorily, A. M., Tovstolytkin, A. I., Solopan, S. O., & Belous, A. G. (2020). Магнітні властивості композитних наночастинок Fe3O4/CoFe2O4 з архітектурою ядро/оболонка. Український фізичний журнал, 65(10), 904. https://doi.org/10.15407/ujpe65.10.904

Номер

Розділ

Фізика магнітних явищ і фізика фероїків

Статті цього автора (авторів), які найбільше читають