Resonance Properties and Magnetic Anisotropy of Nanocrystalline Fe73Cu1Nb3Si16B7 Alloy

  • A. M. Pogorily Institute of Magnetism, Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science of Ukraine
  • D. M. Polishchuk Institute of Magnetism, Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science of Ukraine
  • A. I. Tovstolytkin Institute of Magnetism, Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science of Ukraine
  • A. F. Kravets Institute of Magnetism, Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science of Ukraine
  • V. O. Zamorskyi Institute of Magnetism, Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science of Ukraine
  • A. V. Nosenko G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. of Sci. of Ukraine
  • V. K. Nosenko G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. of Sci. of Ukraine
Keywords: ferromagnetic resonance, amorphous ribbon, nanocrystalline alloy, magnetic anisotropy

Abstract

Resonance properties of nanocrystalline ribbons of Fe73Cu1Nb3Si16B7 alloy annealed with the use of an electric current under a tensile stress of 180 MPa have been studied within the ferromagnetic resonance method. Two kinds of ferromagnetic regions with different anisotropic behaviors that coexist in the alloy after the annealing are detected. One of them is amorphous and weakly magnetically anisotropic, whereas the other is characterized by a pronounced uniaxial magnetic anisotropy and corresponds to the nanocrystalline phase. Quantitative estimations of magnetic parameters in two magnetic phases of the alloy are made.

References

Y. Yoshizawa, S. Oguma, K. Yamauchi. New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044 (1988). https://doi.org/10.1063/1.342149

К. Hono, K. Hiraga, Q. Wang, A. Inoue, T. Sakurai. The microstructure evolution of a Fe73.5Si13.5B9Nb3Cu1 nanocrystalline soft magnetic material. Acta Metall. Mater. 40, 2137 (1992). https://doi.org/10.1016/0956-7151(92)90131-W

V.V. Nemoshkalenko, L.E. Vlasenko, A.V. Romanova, A.P. Brovko, V.V. Maslov, V.K. Nosenko, Y.U. N. Petrov. Nanocrystal structure at the stage prior to crystallization of amorphous Fe73.5Si13.5B9Cu1Nb3. Metallofiz. Noveish. Tekhn. 20, 22 (1998).

V.V. Maslov, V.K. Nosenko, L.E. Tapanenko, A.P. Brovko. Nanocrystallization in FINEMETs. Phys. Met. Metallogr. 91, 474 (2001).

R. Hono. Nanoscale microstructural analysis of metallic materials by atom probe field ion microscopy. Mater. Sci. 47, 621 (2002). https://doi.org/10.1016/S0079-6425(01)00007-X

G. Herzer. Anisotropies in soft magnetic nanocrystalline alloys. J. Magn. Magn. Mater. 294, 99 (2005). https://doi.org/10.1016/j.jmmm.2005.03.020

D. Azuma, R. Hasegawa, S. Saito, M. Takahashi. Effect of residual strain in Fe-based amorphous alloys on field induced magnetic anisotropy and domain structure. J. Appl. Phys. 113, 17A339 (2013). https://doi.org/10.1063/1.4799969

S. Flohrer, R. Sch?afer, J. McCord, S. Roth, L. Schultz, F. Fiorillo et al. Dynamic magnetization process of nanocrystalline type wound cores with transverse field-induced anisotropy. Acta Materialia. 54, 4693 (2006). https://doi.org/10.1016/j.actamat.2006.04.040

L. Kraus, K. Z?av?eta, O. Heczko, P. Duhaj, G. Vlas?ak, J. Schneider. Magnetic anisotropy in as-quenched and stress-annealed amorphous and nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys. J. Magn. Magn. Mater. 112, 275 (1992). https://doi.org/10.1016/0304-8853(92)91172-P

G. Herzer. Creep induced magnetic anisotropy in nanocrystalline Fe-Cu-Nb-Si-B alloys. IEEE Trans. Magn. 30, 4800 (1994). https://doi.org/10.1109/20.334226

B. Hofmann, H. Kronm?uller. Creep induced magnetic anisotropy in nanocrystalline Fe73.5Cu1Nb3Si13.5B9. Nanostruct. Mater. 6, 961 (1995). https://doi.org/10.1016/0965-9773(95)00220-0

G. Herzer, V. Budinsky, C. Polak. Magnetic properties of nanocrystalline FeCuNbSiB with huge creep induced anisotropy. J. Phys.: Conf. Ser. 266, 012010 (2011). https://doi.org/10.1088/1742-6596/266/1/012010

T. Yanai, K. Takagi, K. Takahashi, M. Nakano, Y. Yoshizawa, H. Fukunaga. Fabrication of Fe-based ribbon with controlled permeability by Joule heating under tensile stress. J. Magn. Magn. Mater. 320, e833 (2008). https://doi.org/10.1016/j.jmmm.2008.04.180

T. Yanai, T. Ohya, K. Takahashi, M. Nakano, Y. Yoshizawa, H. Fukunaga. A new fabrication process of Fe-based ribbon with creep-induced anisotropy. J. Magn. Magn. Mater. 290-291, 1502 (2005). https://doi.org/10.1016/j.jmmm.2004.11.560

E. Csizmadia, L. K. Varga, Z. Pal?anki, F. Z?amborszky. Creep or tensile stress induced anisotropy in FINEMET-type ribbons? J. Magn. Magn. Mater. 374, 587 (2015). https://doi.org/10.1016/j.jmmm.2014.08.066

F. Alves. Flash stress annealings in nanocrystalline alloys for new inductive components. J. Magn. Magn. Mater. 226-230, 1490 (2001). https://doi.org/10.1016/S0304-8853(00)00936-7

H. Fukunaga, H. Tanaka, T. Yanai, M. Nakano, K. Takahashi, Y. Yoshizawa. High performance nanostructured cores for chock coils prepared by using creep-induced anisotropy. J. Magn. Magn. Mater. 242-245, 279 (2002). https://doi.org/10.1016/S0304-8853(01)01257-4

A. Nosenko, T. Mika, O. Rudenko, Y. Yarmoshchuk, V. Nosenko. Soft magnetic properties of nanocrystalline Fe73B7Si16Nb3Cu1 alloy after rapid heating under tensile stress. Nanoscale Res. Lett. 10, 136 (2015). https://doi.org/10.1186/s11671-015-0837-z

C. Kittel. On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155 (1948). https://doi.org/10.1103/PhysRev.73.155

A.Ya. Blank, M.I. Kaganov. Ferromagnetic resonance and plasma effects inmetals. Sov. Phys.Uspekhi. 10, 536 (1968). https://doi.org/10.1070/PU1968v010n04ABEH003701

J. Smit, H.G. Beljers. Ferromagnetic resonance absorption in BaFe12O19, a highly anisotropic crystal. Phillips Res. Rep. 10, 113 (1955).

Published
2019-11-01
How to Cite
Pogorily, A., Polishchuk, D., Tovstolytkin, A., Kravets, A., Zamorskyi, V., Nosenko, A., & Nosenko, V. (2019). Resonance Properties and Magnetic Anisotropy of Nanocrystalline Fe73Cu1Nb3Si16B7 Alloy. Ukrainian Journal of Physics, 64(10), 942. https://doi.org/10.15407/ujpe64.10.942
Section
Physics of magnetic phenomena and physics of ferroics