Характеристики і параметри плазми перенапруженого наносекундного розряду в повітрі з малими домішками парів перехідних металів

Автор(и)

  • O. K. Shuaibov Uzhgorod National University
  • O. Y. Minya Uzhgorod National University
  • M. P. Chuchman Uzhgorod National University
  • A. O. Malinina Uzhgorod National University
  • O. M. Malinin Uzhgorod National University
  • V. V. Danilo Uzhgorod National University
  • Z. T. Gomoki Uzhgorod National University

DOI:

https://doi.org/10.15407/ujpe63.9.790

Ключові слова:

наносекундний розряд, повітря, випромінювання атомів та іонів, параметри плазми, цинк, мідь, залізо

Анотація

Дослiджено характеристики перенапруженого наносекундного розряду в повiтрi коли вiддаль мiж електродами складає (1–5) · 10−3 м та при умовах внесення парiв матерiалу електродiв (Zn, Cu, Fe) в плазму за рахунок ектонного механiзму. Шляхом числового моделювання розряду в системi “повiтря–пари мiдi” встановлено параметри плазми розряду в залежностi вiд величини вiдношення E/N, де E – напруженiсть електричного поля, N – концентрацiя частинок в розрядi.

Посилання

<ol>
<li>T.Kh. Bakst, V.F. Tarasenko, Yu.V. Shut'ko, M.V. Erofeev. Point-like pulse-periodic UV radiation source with a short pulse duration. Quant. Electr. 42, 153 (2012).
<a href="https://doi.org/10.1070/QE2012v042n02ABEH014795">https://doi.org/10.1070/QE2012v042n02ABEH014795</a>
</li>
<li>S.V. Avtaeva, O.S. Zhdanova, A.A. Pikulev, E.A. Sosnin, V.F. Tarasenko. New Direction in Scientific Research and Application of Excilamps (STT Publishing, Tomsk, 2013) [ISBN: 978-593629-xxx-x].
</li>
<li>A.K. Shuaibov, G.E. Laslov, Ya.Ya. Kozak. Emission characteristics of the cathode region of nanosecond discharge in atmospheric pressure air. Opt. Spectrosk. 116, 552 (2014).
<a href="https://doi.org/10.1134/S0030400X14030199">https://doi.org/10.1134/S0030400X14030199</a>
</li>
<li>A.K. Shuaibov, G.E. Laslov, A.I. Minya, Z.T. Gomoki. Characteristics and parameters of nanosecond air discharge plasma between chalcopyrite electrodes. Techn. Phys. Lett. 40, 963 (2014).
<a href="https://doi.org/10.1134/S106378501411011X">https://doi.org/10.1134/S106378501411011X</a>
</li>
<li>A.K. Shuaibov, A.Y. Minya, Z.T. Gomoki, V.V. Danilo, R.B. Pinzenik. Parameters of a high-current pulse discharge in the air with the ectonic mechanism of copper vapor injection into the discharge gap. Elektr. Obrab. Nater. 54, 46 (2018) (in Russian).
</li>
<li>G.A. Mesyats. Ecton or electron avalanche from metal. Phys. Usp. 38, 567 (1995).
<a href="https://doi.org/10.1070/PU1995v038n06ABEH000089">https://doi.org/10.1070/PU1995v038n06ABEH000089</a>
</li>
<li>A. Shuaibov, A. Minya, Z. Gomoki, R. Critzak, G. Laslov, I. Shevera. The formation of excited molecules chloride, argon, chlorine and hydroxyl radicals in the nanosecond barrier discharge. J. Electr. Engineer. 2, 96 (2014).
</li>
<li>A.K. Shuaibov, R.V.Grizak. Optical characteristics of UV-VUV lamps on the electronic-vibrational transitions of the hydroxyl radical, pumped by a nanosecond capacitive discharge. High. Volt. 2, 78 (2017).
<a href="https://doi.org/10.1049/hve.2016.0092">https://doi.org/10.1049/hve.2016.0092</a>
</li>
<li>D.V. Beloplotov, V.F. Tarasenko, D.A. Sorokin, M.I. Lomaev. Formation of spherical streamers at the subnanosecond breakdown of gases under high pressures in a nonuniform electric field. Pis'ma Zh. Eksp. Teor. Fiz. 106, 627 (2017) (in Russian).
</li>
<li> D.Z. Pai, G.D. Stancu, D.A. Lacoste, Ch.O. Laux. Nanosecond repetitively pulsed discharges in air at atmospheric pressure, the glow regime. Plasma Sourc. Sci. Technol. 18, 045030 (2009).
<a href="https://doi.org/10.1088/0963-0252/18/4/045030">https://doi.org/10.1088/0963-0252/18/4/045030</a>
</li>
<li> D.Z. Pai, D.A. Lacoste, Ch.O. Laux. Nanosecond repetitively pulsed discharges in air at atmospheric pressure, the spark regime. Plasma Sourc. Sci. Technol. 19, 065015 (2010).
<a href="https://doi.org/10.1088/0963-0252/19/6/065015">https://doi.org/10.1088/0963-0252/19/6/065015</a>
</li>
<li> R.M. Van der Horst, T. Verreycken, E.M. van Veldhuizen, P.J. Bruggerman. Time-resolved optical emission spectroscopy of nanosecond pulsed discharges in atmospheric pressure N2 and N2/H2O mixtures. J. Phys. D 45, 345201 (2012).
<a href="https://doi.org/10.1088/0022-3727/45/34/345201">https://doi.org/10.1088/0022-3727/45/34/345201</a>
</li>
<li> J.M. Palomares, A. Kohut, G. Galbacs, R. Engeln, Zs. Geretovszky. A time-resolved imaging and electrical study on a high current pressure, atmospheric pressure, spark discharge. J. Appl. Phys. 118, 233305 (2015).
<a href="https://doi.org/10.1063/1.4937729">https://doi.org/10.1063/1.4937729</a>
</li>
<li> K.A. Prilepa, A.V. Samusenko, Yu.K. Stishkov. Methods for the calculation of the breakdown voltage for air gaps in weakly and strongly nonuniform fields. Teplofiz. Vys. Temp. 54, 693 (2016) (in Russian).
</li>
<li> F.G. Rutberg, V.V. Gusarov, V.A. Kolikov, I.P. Voskresenskaya et al. Research of physico-chemical properties of nanoparticles obtained using pulsed electric discharges in water. Zh. Tekhn. Fiz. 82, 33 (2012) (in Russian).
</li>
<li> M. Laroussi, X. Lu, M. Keidar. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. J. Appl. Phys. 122, 020901(2017).
<a href="https://doi.org/10.1063/1.4993710">https://doi.org/10.1063/1.4993710</a>
</li>
<li> E.V. Parkevich, S.I. Tkachenko, A.V. Agafonov, A.R.Mangaleev et al. Research of the prebreakdown stage of a gas discharge in a diode with a point cathode making use of laser probing. Zh. ` Eksp. Teor. Fiz. 151, 627 (2017) (in Russian).
</li>
<li> E.V. Parkevich, A.I. Khir'yanova, A.V. Agafonov, S.I. Tkachenko et al. Peculiarities in the formation of anode plasma at the early stage of nanosecond discharge in air. Zh. ` Eksp. Teor. Fiz. 153, 504 (2018) (in Russian).
</li>
<li> V.M. Gradov, I.A. Zhelaev, S.S. Korobkov, M.V. Filippov. Ultraviolet radiation emission of pulse-periodic high-pressure discharges in xenon. Matem. Matem. Model. 6, 54 (2017) (in Russian).
</li>
<li> A. Bataller, J. Koulakis, S. Pree, S. Putterman. Nanosecond high-power dense microplasma switch for visible light. Appl. Phys. Lett. 105, 223501 (2014).
<a href="https://doi.org/10.1063/1.4902914">https://doi.org/10.1063/1.4902914</a>
</li>
<li> V.F. Tarasenko. Runaway Electrons Preionized Diffuse Discharge (Nova Science Publ., 2014) [ISBN: 163321883X, 9781633218833].
</li>
<li> D. Levko, S. Yatom, V. Vekselman, Ya. E. Krasik. Electron emission mechanism during the nanosecond high-pressure pulsed discharge in pressurized air. Appl. Phys. Lett. 100, 084105 (2012).
<a href="https://doi.org/10.1063/1.3689010">https://doi.org/10.1063/1.3689010</a>
</li>
<li> D. Levko. Electron kinetics in a microdischarge in nitrogen at an atmospheric pressure. J. Appl. Phys. 114, 223302 (2013).
<a href="https://doi.org/10.1063/1.4848055">https://doi.org/10.1063/1.4848055</a>
</li>
<li> D. Levko, L.L. Raja. Early stage time evolution of a dense nanosecond microdischarge used in fast optical switching applications. Phys. Plasmas 22, 123518 (2015).
<a href="https://doi.org/10.1063/1.4939022">https://doi.org/10.1063/1.4939022</a>
</li>
<li> O.K. Shuaibov. Multi-Electrode Corona Discharge in Gases under High Pressure (Goverla, 2015) (in Ukrainian).
</li>
<li> O.Y. Minya, O.K. Shuaibov, Z.T. Gomoki, V.V. Danilo et al. Optical parameters of nanosecond discharge in the mixture of air and zinc vapor. Visn. Uzhgorod. Univ. Fiz. 39, 93 (2016) (in Ukrainian).
</li>
<li> O.K. Shuaibov, O.Y. Minya, Z.T. Gomoki, V.V. Danilo. Windowless, Point-Source, Ultraviolet Lamp. Utility model patent U 2016 04596, 10.11.2016, Bull. No. 21.
</li>
<li> E.D. Kurbanov, A.V. Gorin. Glow regions of nanosecond pulse discharge in the atmospheric air at various potential electrode configurations. Upravl. Tekhnol. Pokryt. 9, 12 (2009) (in Russian).
</li>
<li> L.P. Babich, T.V. Loiko, V.A. Zukerman. High-voltage nanosecond discharge in dense gases at large overvoltages developing in the runaway electron mode. Usp. Fiz. Nauk 160, 49 (1990) (in Russian).
<a href="https://doi.org/10.3367/UFNr.0160.199007b.0049">https://doi.org/10.3367/UFNr.0160.199007b.0049</a>
</li>
<li> V.F. Tarasenko, S.I. Yakovlenko. Electron runaway mechanism in dense gases and formation of powerful subnanosecond electron beams. Usp. Fiz. Nauk 174, 953 (2004) (in Russian).
<a href="https://doi.org/10.3367/UFNr.0174.200409b.0953">https://doi.org/10.3367/UFNr.0174.200409b.0953</a>
</li>
<li> E.Kh. Baksht, A.G. Burachenko, M.I. Lomaev, A.N. Panchenko et al. Source of pulse-periodic UV radiation on the basis of volume discharge initiated in nitrogen by a beam of electron avalanches. Kvant. Elektron. 45, 366 (2015) (in Russian).
<a href="https://doi.org/10.1070/QE2015v045n04ABEH015479">https://doi.org/10.1070/QE2015v045n04ABEH015479</a>
</li>
<li> A.V. Kozyrev, V.Yu. Kozhevnikov, I.D. Kostyrya, D.V. Rybka et al. Radiation emission of diffuse corona discharge in atmospheric pressure air. Opt. Atmos. Okean. 24, 1009 (2011) (in Russian).
</li>
<li> D.V. Rybka, A.G. Burachenko, V.Yu. Kozhevnikov, A.V. Kozyrev, V.F. Tarasenko. Corona discharge in atmospheric pressure air at the modulated voltage pulse. Opt. Atmos. Okean. 27, 311 (2014).
</li>
<li> V.F. Tarasenko, E.Kh. Baksht, A.G. Burachenko, M.I. Lomaev. Characteristic radiation of nitrogen at subnanosecond breakdown in a highly nonuniform electric field at the positive electrode polarity. Prikl. Fiz. 4, 49 (2016) (in Russian).
</li>
<li> P.L. Smith, C. Heise, J.R. Esmond, R.L. Kurucz. Atomic Spectral Line Database from CD-ROM 23 of R.L. Kurucz (Smithsonian Astrophys. Observatory, 1995).
</li>
<li> A.R. Striganov, N.S. Sventitskii. Tables of Spectral Lines of Neutral and Ionized Atoms (IFI/Plenum, 1968).
</li>
<li> S.I. Maksimov, A.V. Kretinina, N.S. Fomina, L.N. Gall'. Combined radiator for spectrophotometers in a spectral interval from 200 to 1100 nm. Nauchn. Priborostr. 25, 36 (2015) (in Russian).
<a href="https://doi.org/10.18358/np-25-1-i3641">https://doi.org/10.18358/np-25-1-i3641</a>
</li>
<li> V.I. Tyutyunnikov. Spectra of ZnO superdispersed particles polarized in an electric field. East. Eur. J. Phys. 2, 64 (2015).
</li>
<li> E. Kh. Baksht, V.F. Tarasenko, Yu.V. Shut'ko, M.V. Erofeev. Point source of UV radiation with a frequency of 1 kHz and a short pulse duration. Izv. Vyssh. Ucheb. Zaved. Fiz. 11, 91 (2011) (in Russian).
</li>
<li> V.S. Kurbanismailov, O.A. Omarov, G.B. Rakhimkhanov, M.A. Arslanbekov, Kh.M. Abakarova, Ali Rashid Abbs Ali. Optical radiation emission of a pulsed volume discharge in high-pressure He. Usp. Prikl. Fiz. 2, 234 (2014) (in Russian).
</li>
<li> A.N. Gomonai. Radiative decay of autoionizing np 2-states during dielectronic recombination of Zn+ and Cd+ ions. J. Appl. Spectr. 82, 17 (2015).
<a href="https://doi.org/10.1007/s10812-015-0057-4">https://doi.org/10.1007/s10812-015-0057-4</a>
</li>
<li> A.K. Shuaibov, A.Y. Minya, A.A. Malinina, A.N. Malinin, V.V. Danilo, M.Yu. Sichka, I.V. Shevera. Synthesis ofcopper oxides nanostructures by an overstressed nanosecond displacement in atmospheric pressure air between copper electrodes. Am. J. Mech. Mater. Eng. 2, 8 (2018).
</li>
<li> A.S. Pashchina, A.V. Efimov, V.F. Chinnov. Optical researches of multicomponent plasma of capillary discharge. Supersonic efflux mode. Teplofiz. Vys. Temp. 55, 669 (2017) (in Russian).
</li>
<li> http: /www.bolsig.laplace.univ-tlse.fr.
</li>
<li> R.V. Semenyshin, A.N. Veklich, I.L. Babich, V.F. Boretskij. Spectroscopy peculiarities of the thermal plasma of electric arc discharge between electrodes with Zn admixtures. Adv. Space Res. 54, 1235 (2014).
<a href="https://doi.org/10.1016/j.asr.2013.11.042">https://doi.org/10.1016/j.asr.2013.11.042</a>
</li>
<li> M.I. Lomaev, D.V. Beloplotov, D.A. Sorokin, V.F. Tarasenko. Spectral and amplitude-time characteristics of the radiation of a repetitively pulsed discharge initiated by runaway electrons, Opt. Spectrosc. 120, 171 (2016).
<a href="https://doi.org/10.1134/S0030400X16020168">https://doi.org/10.1134/S0030400X16020168</a>
</li>
</ol>

Опубліковано

2018-09-24

Як цитувати

Shuaibov, O. K., Minya, O. Y., Chuchman, M. P., Malinina, A. O., Malinin, O. M., Danilo, V. V., & Gomoki, Z. T. (2018). Характеристики і параметри плазми перенапруженого наносекундного розряду в повітрі з малими домішками парів перехідних металів. Український фізичний журнал, 63(9), 790. https://doi.org/10.15407/ujpe63.9.790

Номер

Розділ

Фізика плазми