Mechanism Enhancing the Emission Power of Gas-Discharge Lamps Based on Mixtures of Neon, Nitrogen, and Mercury Dichloride Vapor in the Blue-Green Spectral Interval
DOI:
https://doi.org/10.15407/ujpe64.9.803Keywords:
discharge lamp, barrier discharge, radiation emission by exciplex molecules, plasma parameters, mercury dichloride, nitrogen, neonAbstract
A mechanism enhancing the radiation power of a gas-discharge lamp based on a mixture of neon, nitrogen, and a mercury dichloride vapor in the blue-green spectral interval as compared with that for a lamp based on a mixture of only neon and a mercury dichloride vapor has been determined. The optical characteristics and the plasma parameters, as well as the value of the reduced electric field, at which the specific discharge power introduced into the excitation of exciplex molecules of mercury monochloride is maximum, are found. The research results can be used to create a more efficient exciplex lamp that emits radiation bands in the blue-green spectral interval.
References
J.H. Parks. Laser action on the B2Σ+1/2 → X2Σ+1/2 band of HgBr at 5018 ˚ A. Appl. Phys. Lett. 31, 297 (1977). https://doi.org/10.1063/1.89676
R. Burnliam. Discharge pumped mercuric halide dissociation lasers. Appl. Phys. Lett. 33, 152 (1978). https://doi.org/10.1063/1.90290
I.S. Lakoba, S.I. Yakovlenko. Active media of exciplex lasers (A review). Kvant. Elektron. 7, 677 (1980) (in Russian).
R. Burnham, E.J. Schimitschek. High-power blue-green lasers. Laser Focus 6, 54 (1981).
S.P. Bazhulin, N.G. Basov, S.N. Bugrimov, V.S. Zuev, A.S. Kamrukov, G.N. Kashnikov, N.P. Kozlov, P.A. Ovchinnikov, A.G. Opekan, V.K. Orlov, Yu.S. Protasov. Green-emitting mercury chloride laser pumped by wide-band optical radiation. Sov. J. Quant. Electron. 16, 836 (1986). https://doi.org/10.1070/QE1986v016n06ABEH006928
A.M. Boichenko, M.I. Lomaev, A.N. Panchenko et al. Ultraviolet and Vacuum-Ultraviolet Excilamps: Physics, Technology and Applications (STT, 2011) (in Russian).
A.N. Malinin. Excitation of mercury monohalides in the plasma of pulse-periodic discharge in mixtures of mercury dihalides and rare gases. Laser Phys. 7, 1032 (1997).
A.N. Malinin. The main characteristics of the plasma of pulse glow discharge in mixtures of mercury dihalides and rare gases. Laser Phys. 8, 395 (1998).
M.M. Guivan, O.M. Malinin, L.L. Shimon. Optimization of the component composition of gas-discharge HgBr-excimer lamps. Nauk. Visn. Uzhgorod. Univ. 4, 12 (1999) (in Ukrainian).
A.N. Malinin, N.N. Guivan, L.L. Shimon. Emission spectra of working mixtures of the HgBr/HgCl excimer lamp. Opt. Spektrosk. 89, 905 (2000) (in Russian). https://doi.org/10.1134/1.1335029
M.M. Guivan, O.M. Malinin, L.L. Shimon. Optimization of optical characteristics of working mixtures for HgBr and HgCl exilamps. Zh. Fiz. Dosl. 6, 74 (2002) (in Ukrainian).
M.M. Guivan, A.N. Malinin. Investigation of the process of excitation of mercury monobromide and monochloride excimer molecules in dense gas-discharge plasma. Ukr. J. Phys. 47, 24 (2002).
Yu.I. Posudin. Laser Photobiology (Vyshcha Shkola, 1989) (in Russian).
V.D. Romanenko, Yu. G. Krot, L.A. Syrenko, V.D. Solomatina. Biotechnology of Hydrobionts Cultivation (Inst. of Hydrobiology, Kyiv, 1999) (in Russian).
U. Kogelschatz. Fundamentals and Applications of Dielectric-barrier Discharges (ABB Corparate Research Ltd, 5405 Dfden, 2000).
T.E. Kuleshova, A.I. Likhachev, E.S. Pavlova et al. Interrelation between absorption spectra of plant pigments and LED illumination with various spectral compositions. Zh. Tekhn. Fiz. 88, 1285 (2018) (in Russian).
G.B. Popovych, A.O. Malinina, I.I. Aksenyuk, R.V. Grytsak. Influence of additional artificial illumination on the initial growth and development stages of tomato and cucumber seedlings. Ovochiv. Bashtann. 64, 44 (2018) (in Ukrainian). https://doi.org/10.32717/0131-0062-2018-64-44-49
G. Zissis, S. Kitsinelis. State of art on the science and technology of electrical light sources: from the past to the future. J. Phys. D 42, 173001 (2009). https://doi.org/10.1088/0022-3727/42/17/173001
U. Kogelschatz. Ultraviolet excimer radiation from none-quilibrium gas discharges and its application in photophysics, photochemistry and photobiology. J. Opt. Technol. 79, 484 (2012). https://doi.org/10.1364/JOT.79.000484
A.A.Malinina, A.K. Shuaibov, A.N.Malinin. Optical emission of atmospheric-pressure dielectric barrier discharge plasma on mercury diiodide/rare gases mixtures. IOSR J. Appl. Phys. 9, 51 (2017). https://doi.org/10.9790/4861-0901015157
V.B. Basov. LEDs: advantages and disadvantages. Elektro-Zh. 6, 34 (2010) (in Russian).
Properties of Inorganic Compounds. A Handbook. Edited by A.I. Efimov, L.P. Belorukova, I.V. Vasilkova, V.P. Chechev (Khimiya, 1983) (in Russian).
R.A. Sapozhnikov. Theoretical Photometry (Energiya, 1977) (in Russian).
R.W. Pears, A.G. Gaydon. The Identification of Molecular Spectra (Chapman and Hall, 1963).
Yu.S. Akishev, A.V. Dem'yanov, V.B. Karalnik et al. Pulsed regime of the diffusive mode of a barrier discharge in helium Fiz. Plazmy 27, 176 (2001) (in Russian). https://doi.org/10.1134/1.1348495
G.J.M. Hagelaar, L.C. Pitchford. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sourc. Sci Technol. 14, 722 (2005). https://doi.org/10.1088/0963-0252/14/4/011
https://www.bolsig.laplace.univ-tlse.fr/.
V. Kushawaha, M.J. Mahmood. Electron impact dissociation of HgX2 (X = Cl, Br, I). Appl. Phys. 62, 2173 (1987). https://doi.org/10.1063/1.339518
A.N. Malinin. Excitation of the B2Σ+1/2 state of mercury monohalides by electron impact. Laser Phys. 7, 1177 (1997).
Yu.P. Raizer, Gas Discharge Physics (Springer, 1997).
A. Mandl, J.J. Parks, C. Roxlo. Collisional quenching kinetics for the HgCl* and HgBr* (B2Σ+1/2) state. J. Chem. Phys. 72, 504 (1980). https://doi.org/10.1063/1.438934
A.N. Malinin. The efficiency of the quenching of the B2Σ+1/2 state in mercury monohalides by halogen-containing molecules in active media of HgCl, HgBr, and HgJ excimer lasers. Laser Phys. 7, 1177 (1997).
W.R. Wadt. The electronic structure of HgCl2 and HgBr2 and its relationship to photodissociation. J. Chem. Phys. 72, 2469 (1980). https://doi.org/10.1063/1.439442
W.L. Nighan, R.T. Brown. Kinetic processes in the HgBr(B → X)/HgBr2 dissociation laser. J. Appl. Phys. 53, 7201 (1982). https://doi.org/10.1063/1.331616
W.R. Wadt. The electronic structure of HgCl and HgBr. Appl. Phys. Lett. 34, 658 (1979). https://doi.org/10.1063/1.90627
V.V. Datsyuk, I.A. Izmailov, V.A. Kochelap. Vibrational relaxation of excimer molecules. Usp. Fiz. Nauk 168, 439 (1998) (in Russian). https://doi.org/10.3367/UFNr.0168.199804c.0439
Applied Atomic Collision Physics. Vol. 3: Gas Lasers. Edited by E.W. McDaniel, W.L. Nighan (Academic Press, New York, 1982).
V.V. Datsyuk, I.A. Izmailov, V.V. Naumov, V.A. Kochelap. Direct electron-impact mechanism of excitation of mercury monobromide in a double-pulse dielectric-barrier-discharge HgBr lamp. Plasma Sourc. Sci. Technol. 25, 045020 (2016). https://doi.org/10.1088/0963-0252/25/4/045020
A.C. Erlandson, T.A. Cool. On the regeneration mechanism of HgBr/2 in HgBr/HgBr2 dissociation lasers. Chem. Phys. Lett. 96, 685 (1983). https://doi.org/10.1016/0009-2614(83)80074-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.