Апроксимація групових інтегралів для різних моделей ґраткового газу
DOI:
https://doi.org/10.15407/ujpe63.12.1066Ключові слова:
ґратковий газ, вiрiальний ряд, груповий iнтеграл, симетрiя частинка-дiрка, радiус збiжностi, точка насичення, точка кипiнняАнотація
В роботi пропонується апроксимацiя звiдних групових iнтегралiв необмежено високих порядкiв для вiдомої статистичної моделi ґраткового газу довiльної геометрiї та вимiрностi. Апроксимацiя ґрунтується на нещодавно отриманiй точнiй iнформацiї стосовно радiусу збiжностi вiрiальних серiй для тиску й густини за степенями активностi. У порiвняннi з попереднiми дослiдженнями симетричних вiрiальних розкладiв у газоподiбних та конденсованих станах ґраткового газу, запропонована апроксимацiя робить значення тиску у вiдповiдних точках насичення та кипiння суттєво ближчими одне до одного, а для моделi ґраткового газу Лi–Янга значно пiдвищує збiжнiсть до вiдомого точного розв’язку.
Посилання
E. Ising. Contribution to the theory of ferromagnetism. Z. Phys. 31, 253 (1925). https://doi.org/10.1007/BF02980577
C.N. Yang. The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. 85, 808 (1952). https://doi.org/10.1103/PhysRev.85.808
T.D. Lee, C.N. Yang. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87, 410 (1952). https://doi.org/10.1103/PhysRev.87.410
M. Kac, G.E. Uhlenbeck, P.C. Hemmer. On the Van der Waals theory of the vapor-liquid equilibrium. I. Discussion of a one-dimensional model. J. Math. Phys. 4, 216 (1963). https://doi.org/10.1063/1.1703946
J.L. Lebowitz, O. Penrose. Rigorous treatment of the Van der Waals–Maxwell theory of the liquid-vapor transition. J. Math. Phys. 7, 98 (1966). https://doi.org/10.1063/1.1704821
J.E. Mayer, M.G. Mayer. Statistical Mechanics (Wiley, 1977).
R. Balescu. Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, 1975).
R.K. Pathria. Statistical Mechanics (Butterworth-Heinemann, 1997).
M.V. Ushcats. Equation of state beyond the radius of convergence of the virial expansion. Phys. Rev. Lett. 109, 040601 (2012). https://doi.org/10.1103/PhysRevLett.109.040601
M.V. Ushcats. Condensation of the Lennard-Jones fluid on the basis of the Gibbs single-phase approach. J. Chem. Phys. 138, 094309 (2013). https://doi.org/10.1063/1.4793407
M.V. Ushcats. Adequacy of the virial equation of state and cluster expansion. Phys. Rev. E 87, 042111 (2013). https://doi.org/10.1103/PhysRevE.87.042111
V.M. Bannur. Virial expansion and condensation with a new generating function. Physica A 419, 675 (2015). https://doi.org/10.1016/j.physa.2014.10.053
M.V. Ushcats, L.A. Bulavin, V.M. Sysoev, V.Y. Bardik, A.N. Alekseev. Statistical theory of condensation – Advances and challenges. J. Mol. Liq. 224, 694 (2016). https://doi.org/10.1016/j.molliq.2016.09.100
M.V. Ushcats, L.A. Bulavin. Evidence for a first-order phase transition at the divergence region of activity expansions. Phys. Rev. E (submitted) (2018). https://doi.org/10.1103/PhysRevE.98.042127
M.V. Ushcats, S.Y. Ushcats, L.A. Bulavin, V.M. Sysoev. Equation of state for all regimes of a fluid: From gas to liquid. Physica A (submitted) (2018).
M.V. Ushcats. High-density equation of state for a lattice gas. Phys. Rev. E 91, 052144 (2015). https://doi.org/10.1103/PhysRevE.91.052144
M.V. Ushcats, L.A. Bulavin, V.M. Sysoev, S.J. Ushcats. Virial and high-density expansions for the Lee–Yang lattice gas. Phys. Rev. E 94, 012143 (2016). https://doi.org/10.1103/PhysRevE.94.012143
M.V. Ushcats, L.A. Bulavin, V.M. Sysoev, S.Y. Ushcats. Lattice gas condensation and its relation to the divergence of virial expansions in the powers of activity. Ukr. J. Phys. 62, 533 (2017). https://doi.org/10.15407/ujpe62.06.0533
S.Y. Ushcats, M.V. Ushcats, L.A. Bulavin, O.S. Svechnikova, I.L. Mykheliev. Asymptotics of activity series at the divergence point. Pramana – J. Phys. 91, 31 (2018).
M.V. Ushcats, L.A. Bulavin, V.M. Sysoev, S.Y. Ushcats. Divergence of activity expansions: Is it actually a problem? Phys. Rev. E 96, 062115 (2017). https://doi.org/10.1103/PhysRevE.96.062115
J. Lennard-Jones. On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature. Proc. Roy. Soc. A 106, 441 (1924). https://doi.org/10.1098/rspa.1924.0081
J. Lennard-Jones. On the determination of molecular fields. I. From the equation of state of a gas. Proc. Roy. Soc. A 106, 463 (1924). https://doi.org/10.1098/rspa.1924.0082
C. Feng, A.J. Schultz, V. Chaudhary, D.A. Kofke. Eighth to sixteenth virial coefficients of the Lennard-Jones model. J. Chem. Phys. 143, 044504 (2015). https://doi.org/10.1063/1.4927339
M.V. Ushcats. Communication: Low-temperature approximation of the virial series for the Lennard-Jones and modified Lennard-Jones models. J. Chem. Phys. 141, 101103 (2014). https://doi.org/10.1063/1.4895126
A.J. Schultz, D.A. Kofke. Vapor-phase metastability and condensation via the virial equation of state with extrapolated coefficients. Fluid Phase Equilibr. 409, 12 (2016). https://doi.org/10.1016/j.fluid.2015.09.016
J.K. Singh, D. A. Kofke. Mayer sampling: Calculation of cluster integrals using free-energy perturbation methods. Phys. Rev. Lett. 92, 220601 (2004). https://doi.org/10.1103/PhysRevLett.92.220601
M.V. Ushcats. Modification of the Mayer sampling method for the calculation of high-order virial coefficients. Ukr. J. Phys. 59, 737 (2014). https://doi.org/10.15407/ujpe59.07.0737
M.V. Ushcats. Virial coefficients of modified Lennard-Jones potential. Ukr. J. Phys. 59, 172 (2014). https://doi.org/10.15407/ujpe59.02.0172
M.V. Ushcats. Modified Lennard-Jones model: Virial coefficients to the 7th order. J. Chem. Phys. 140, 234309 (2014). https://doi.org/10.1063/1.4882896
M.V. Ushcats, S.Y. Ushcats, A.A. Mochalov. Virial coefficients of Morse potential. Ukr. J. Phys. 61, 160 (2016). https://doi.org/10.15407/ujpe61.02.0160
J. Hadamard. Essai sur l'´etude des fonctions donn’ees par leur d’eveloppement de Taylor. J Math’em. Pures Appl. 8, 101 (1892).
A.M. Ferrenberg, J. Xu, D.P. Landau. Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model. Phys. Rev. E 97, 043301 (2018). https://doi.org/10.1103/PhysRevE.97.043301
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.