Virial Coefficients of Modified Lennard-Jones Potential

Authors

  • M. V. Ushcats Admiral Makarov National University of Shipbuilding

DOI:

https://doi.org/10.15407/ujpe59.02.0172

Keywords:

virial coefficient, irreducible cluster integral, Mayer function, spinodal, binodal

Abstract

A modified Lennard-Jones potential with a finite interaction radius, which maintains the realistic behavior of its parent and greatly simplifies the numerical simulation of high-density thermodynamic systems, has been considered. The virial coefficients of this potential have been calculated up to the fifth order, inclusive, in a wide range of temperatures. The modified potential can be applied not only in numerical experiments but also in theoretical studies. It is proposed as a reference model to test the adequacy of various theoretical and experimental approaches.

References

S. Chapman and T.G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge Univ. Press, New York, 1970).

J. Lennard-Jones, Proc. R. Soc. London, Sect. A 106, 441 (1924).

J. Lennard-Jones, Proc. R. Soc. London, Sect. A 106, 463 (1924).

W.W. Wood and F.R. Parker, J. Chem. Phys. 27, 720 (1957).

https://doi.org/10.1063/1.1743822

L.A. Rowley, D. Nicholson, and N.G. Parsonage, J. Comput. Phys. 17, 401 (1975).

https://doi.org/10.1016/0021-9991(75)90042-X

A.Z. Panagiotopoulos, Int. J. Thermophys. 15, 1057 (1994).

https://doi.org/10.1007/BF01458815

X. Feng, Z. Li, and Z. Guo, Chin. Sci. Bull. 45, 2004 (2000).

https://doi.org/10.1007/BF02909697

D.A. Kofke, J. Chem. Phys. 98, 4149 (1993).

https://doi.org/10.1063/1.465023

D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, CA, 2002).

J.K. Johnson, J.A. Zollweg, and K.E. Gubbins, Mol. Phys. 78, 591 (1993).

https://doi.org/10.1080/00268979300100411

P. Attard, J. Chem. Phys. 116, 9616 (2002).

https://doi.org/10.1063/1.1478057

J. Nicolas, K. Gubbins, W. Streett, and D. Tildesley, Mol. Phys. 37, 1429 (1979).

https://doi.org/10.1080/00268977900101051

A. Lotfi, J. Vrabec, and J. Fischer, Mol. Phys. 76, 1319 (1992).

https://doi.org/10.1080/00268979200102111

W.-Z. Ou-Yang, Z.-Y. Lu, T.-F. Shi, Z.-Y. Sun, and L.- J. An, J. Chem. Phys. 123, 234502 (2005).

https://doi.org/10.1063/1.2135775

B. Smit, J. Chem. Phys. 96, 8639 (1992).

https://doi.org/10.1063/1.462271

K.R.S. Shaul, A.J. Schultz, and D.A. Kofke, Coll. Czech. Chem. Commun. 75, 447 (2010).

https://doi.org/10.1135/cccc2009113

J.Q. Broughton and G.H. Gilmer, J. Chem. Phys. 79, 5095 (1983).

https://doi.org/10.1063/1.445633

T. Sakagami and K. Fuchizaki, J. Phys.: Conf. Ser. 215, 012123 (2010).

https://doi.org/10.1088/1742-6596/215/1/012123

Y. Asano and K. Fuchizaki, J. Chem. Phys. 137, 174502 (2012).

https://doi.org/10.1063/1.4764855

A.J. Schultz and D.A. Kofke, Mol. Phys. 107, 2309 (2009).

https://doi.org/10.1080/00268970903267053

A.J. Schultz, N.S. Barlow, V. Chaudhary, and D.A. Kofke, Mol. Phys. 111, 535 (2013).

https://doi.org/10.1080/00268976.2012.730642

J.E. Mayer and M.G. Mayer, Statistical Mechanics (Wiley, New York, 1977).

V.I. Krylov, Approximate Calculation of Integrals (Dover, Mineola, NY, 2006).

G.A. Martynov, Physics-Uspekhi 42, 517 (1999).

https://doi.org/10.1070/PU1999v042n06ABEH000543

M.V. Ushcats, Visn Kharkiv. Nats. Univ. 1020, 6 (2012).

M.V. Ushcats, Phys. Rev. Lett. 109, 040601 (2012).

https://doi.org/10.1103/PhysRevLett.109.040601

M.V. Ushcats, Phys. Rev. E 87, 042111 (2013).

https://doi.org/10.1103/PhysRevE.87.042111

M.V. Ushcats, J. Chem. Phys. 138, 094309 (2013).

https://doi.org/10.1063/1.4793407

Published

2018-10-18

How to Cite

Ushcats, M. V. (2018). Virial Coefficients of Modified Lennard-Jones Potential. Ukrainian Journal of Physics, 59(2), 172. https://doi.org/10.15407/ujpe59.02.0172

Issue

Section

General problems of theoretical physics