Імпульси екситонної конденсованої фази в напівпровідниках з подвійними квантовими ямами при стаціонарному накачуванні

Розмірні ефекти

Автор(и)

  • V. V. Mykhaylovskyy Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine
  • V. I. Sugakov Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe63.5.396

Анотація

Проаналiзовано умови, за яких виникає генерацiя i рух солiтонiв (областей екситонних конденсованих фаз) в подвiйних квантових ямах напiвпровiдникiв при стацiонарнiй накачцi i наявностi зовнiшньої тянучої сили. Показано, що iснує мiнiмальний розмiр системи, при якому стан з рухомими солiтонами може бути створений. Знайдена залежнiсть мiнiмального значення тянучої сили, необхiдної для генерацiї рухомих солiтонiв, вiд розмiрiв системи.

Посилання

<ol>
<li>L.V. Butov, A.C. Gossard, D.S. Chemla. Macroscopically ordered state in an exciton system. Nature 418, 751 (2002).
<a href="https://doi.org/10.1038/nature00943">https://doi.org/10.1038/nature00943</a>
</li>
<li>A.V. Gorbunov, V.B. Timofeev. Collective state in a Bose gas of interacting interwell excitons. JETP Lett. 83, 146 (2006).
<a href="https://doi.org/10.1134/S0021364006040047">https://doi.org/10.1134/S0021364006040047</a>
</li>
<li>L.S. Levitov, B.D. Smons, L.V. Butov. Pattern formation as a signature of quantum degeneracy in a cold exciton system. Phys. Rev. Lett. 94, 176404 (2005).
<a href="https://doi.org/10.1103/PhysRevLett.94.176404">https://doi.org/10.1103/PhysRevLett.94.176404</a>
</li>
<li>A.V. Paraskevov, T.V. Khabarova. On the microscopic theory of the exciton ring fragmentation. Phys. Lett. A 368, 151 (2007).
<a href="https://doi.org/10.1016/j.physleta.2007.04.001">https://doi.org/10.1016/j.physleta.2007.04.001</a>
</li>
<li>R.B. Saptsov. On the instability of a homogeneous state of a weakly interacting Bose gas under external cooling. JETP Lett. 86, 687 (2008).
<a href="https://doi.org/10.1134/S0021364007220158">https://doi.org/10.1134/S0021364007220158</a>
</li>
<li>C.S. Liu, H.G. Luo, W.C. Wu. Pattern formation of indirect excitons in coupled quantum wells. J. Phys. Condens. Matter 18, 9659 (2006).
<a href="https://doi.org/10.1088/0953-8984/18/42/012">https://doi.org/10.1088/0953-8984/18/42/012</a>
</li>
<li>C.S. Liu, H.G. Luo, W.C. Wu. Theoretical modeling of spatial- and temperature-dependent exciton energy in coupled quantum wells. Phys. Rev. B 80, 125317 (2010).
<a href="https://doi.org/10.1103/PhysRevB.80.125317">https://doi.org/10.1103/PhysRevB.80.125317</a>
</li>
<li>V.K. Mukhomorov. On the possibility of realizing a periodic low-density spatial distribution of excitons. Phys. Solid State 52, 241 (2010).
<a href="https://doi.org/10.1134/S1063783410020046">https://doi.org/10.1134/S1063783410020046</a>
</li>
<li>J. Wilkes, E.A. Muljarov, A.L. Ivanov. Drift-diffusion model of the fragmentation of the external ring structure in the photoluminescence pattern emitted by indirect excitons in coupled quantum wells. Phys. Rev. Lett. 109, 187402 (2012).
<a href="https://doi.org/10.1103/PhysRevLett.109.187402">https://doi.org/10.1103/PhysRevLett.109.187402</a>
</li>
<li> S.V. Andreev. Thermodynamic model of the macroscopically ordered exciton state. Phys. Rev. Lett. 110, 146401 (2013).
<a href="https://doi.org/10.1103/PhysRevLett.110.146401">https://doi.org/10.1103/PhysRevLett.110.146401</a>
</li>
<li> V.S. Babichenko, I.Ya. Polishchuk. Coulomb correlations and electron-hole liquid in double quantum wells. JETP Lett. 97, 726 (2013) .
<a href="https://doi.org/10.1134/S0021364013110027">https://doi.org/10.1134/S0021364013110027</a>
</li>
<li> V.S. Babichenko, I.Ya. Polishchuk. Quantum phase transition of electron-hole liquid in coupled quantum wells. Phys. Rev. B 94, 165304 (2016).
<a href="https://doi.org/10.1103/PhysRevB.94.165304">https://doi.org/10.1103/PhysRevB.94.165304</a>
</li>
<li> V.I. Sugakov. Islands of exciton condensed phases in a two-dimensional system, the distribution of their sizes and coherence in position. Solid State Commun. 134, 63, (2005).
<a href="https://doi.org/10.1016/j.ssc.2004.07.078">https://doi.org/10.1016/j.ssc.2004.07.078</a>
</li>
<li> V.I. Sugakov. Exciton condensation in quantum wells: Temperature effects. Phys. Solid State 48, 1984 (2006).
<a href="https://doi.org/10.1134/S1063783406100283">https://doi.org/10.1134/S1063783406100283</a>
</li>
<li> M.Y. J. Tan, N.D. Drummond, R.J. Needs. Exciton and biexciton energies in bilayer systems. Phys. Rev. B 71, 033303 (2005).
<a href="https://doi.org/10.1103/PhysRevB.71.033303">https://doi.org/10.1103/PhysRevB.71.033303</a>
</li>
<li> Ch. Shindler, R. Zimmermann. Analysis of the exciton-exciton interaction in semiconductor quantum wells. Phys. Rev. B 78, 045313 (2008).
<a href="https://doi.org/10.1103/PhysRevB.78.045313">https://doi.org/10.1103/PhysRevB.78.045313</a>
</li>
<li> A.D. Meyertholen, M.M. Fogler. Biexcitons in two-dimensional systems with spatially separated electrons and holes. Phys. Rev. B 78, 235307 (2008).
<a href="https://doi.org/10.1103/PhysRevB.78.235307">https://doi.org/10.1103/PhysRevB.78.235307</a>
</li>
<li> Yu.E. Lozovik, O.I. Berman. Phase transitions in a system of two coupled quantum wells. JETP Lett. 64, 573 (1996).
<a href="https://doi.org/10.1134/1.567264">https://doi.org/10.1134/1.567264</a>
</li>
<li> A. A. Chernyuk, V. I. Sugakov. Ordered dissipative structures in exciton systems in semiconductor quantum wells. Phys. Rev. B 74, 085303 (2006).
<a href="https://doi.org/10.1103/PhysRevB.74.085303">https://doi.org/10.1103/PhysRevB.74.085303</a>
</li>
<li> M. Remeika, J.C. Graves, A.T. Hammack, A.D. Meyertolen, M.M. Fogler, L.V. Butov, M. Hanson, A.C. Gossard. Localization-delocalization transition of indirect excitons in lateral electrostatic lattices. Phys. Rev. Lett. 102, 186803 (2009).
<a href="https://doi.org/10.1103/PhysRevLett.102.186803">https://doi.org/10.1103/PhysRevLett.102.186803</a>
</li>
<li> A.A. Chernyuk, V.I. Sugakov. Exciton phase transitions in semiconductor quantum wells with disc-shaped electrode. Solid State Commun. 149, 2185 (2009).
<a href="https://doi.org/10.1016/j.ssc.2009.09.015">https://doi.org/10.1016/j.ssc.2009.09.015</a>
</li>
<li> V.B. Timofeev, A.V. Gorbunov, D.A. Demin. Bose-Einstein condensation of dipolar excitons in lateral traps. Low Temp. Phys. 37, 179 (2011).
<a href="https://doi.org/10.1063/1.3570931">https://doi.org/10.1063/1.3570931</a>
</li>
<li> A.V. Gorbunov, V.B. Timofeev. Phase diagram of the Bose condensation of dipolar excitons in GaAs/AlGaAs quantum-well heterostructures. JETP Lett. 96, 143 (2012).
<a href="https://doi.org/10.1134/S0021364012140056">https://doi.org/10.1134/S0021364012140056</a>
</li>
<li> V.V. Tomylko, I.Yu. Goliney, A.A. Chernyuk, V.I. Sugakov. Exciton density pattern formation in laser irradiated quantum wells under electrodes of various shapes. Low Temp. Phys. 40, 975 (2014).
<a href="https://doi.org/10.1063/1.4892648">https://doi.org/10.1063/1.4892648</a>
</li>
<li> M. Remeika, A.T. Hammack, S.V. Poltavtsev, L.V. Butov et al. Pattern formation in the exciton inner ring. Phys. Rev. B 88, 125307 (2013).
<a href="https://doi.org/10.1103/PhysRevB.88.125307">https://doi.org/10.1103/PhysRevB.88.125307</a>
</li>
<li> A.A. Chernyuk, V.I. Sugakov, V.V. Tomylko. Model of fragmentation of the exciton inner ring in semiconductor quantum wells. Phys. Rev. B 90, 205308 (2014).
<a href="https://doi.org/10.1103/PhysRevB.90.205308">https://doi.org/10.1103/PhysRevB.90.205308</a>
</li>
<li> V.I. Sugakov. Exciton condensation in quantum wells. Self-organization against Bose-condensation. Ukr. J. Phys. 56, 1124 (2011).
</li>
<li> V.I. Sugakov. Ordered structures of exciton condensed phases in the presence of an inhomogeneous potential. J. Phys. Condens. Matter 21, 275803 (2009).
<a href="https://doi.org/10.1088/0953-8984/21/27/275803">https://doi.org/10.1088/0953-8984/21/27/275803</a>
</li>
<li> O.I. Dmytruk, V.I. Sugakov. Amplification and passing through the barrier of the exciton condensed phase pulse in double quantum wells. Physica B 436, 80 (2014).
<a href="https://doi.org/10.1016/j.physb.2013.11.055">https://doi.org/10.1016/j.physb.2013.11.055</a>
</li>
<li> V. Mykhaylovskyy, V. Sugakov, I. Goliney. Excitation of pulses of excitonic condensed phase at steady pumping. J. Nanophotonics 10, 033504 (2016).
<a href="https://doi.org/10.1117/1.JNP.10.033504">https://doi.org/10.1117/1.JNP.10.033504</a>
</li>
<li> G. Nicolis, I. Prigogine. Self-Organization in Non-Equilibrium Systems (Wiley, 1977).
</li>
<li> B.S. Kerner, V.V. Osipov. Autosolitons. Sov. Phys. Usp. 32, 101 (1989).
<a href="https://doi.org/10.1070/PU1989v032n02ABEH002679">https://doi.org/10.1070/PU1989v032n02ABEH002679</a>
</li>

Downloads

Опубліковано

2018-07-03

Як цитувати

Mykhaylovskyy, V. V., & Sugakov, V. I. (2018). Імпульси екситонної конденсованої фази в напівпровідниках з подвійними квантовими ямами при стаціонарному накачуванні: Розмірні ефекти. Український фізичний журнал, 63(5), 396. https://doi.org/10.15407/ujpe63.5.396

Номер

Розділ

Фізика поверхні

Статті цього автора (авторів), які найбільше читають