Symmetric Laue Diffraction of Spherical Neutron Waves in Absorbing Crystals

Authors

  • A. Ya. Dzyublik Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine
  • V. I. Slisenko Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine
  • V. V. Mykhaylovskyy Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe63.2.174

Keywords:

thermal neutrons, Laue diffraction, dynamical scattering theory, spherical waves, Borrmann triangle

Abstract

Well-known Kato's theory of the Laue diffraction of spherical x-ray waves is generalized to the case of the neutron diffraction in strongly absorbing crystals, taking into consideration both the potential  and the resonant scattering of neutrons by nuclei. The saddle-point method is applied for estimation of the angular integrals, being more adequate in the case of strongly absorbing crystals than the stationary-phase approximation  used by Kato. It is found that the distribution of intensity of diffracted and refracted beams  along the basis of the Borrmann triangle strongly depends on the deviation of the neutron energy from the  nuclear resonant level.

Author Biography

V. I. Slisenko, Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine

Corresponding Member of National Academy of Sciences of Ukraine, 
Doctor of Sciences in Physics and Mathematics, 
Head of the Department of Research Reactor. 

References

<ol><li>A.M. Afanas'ev, Yu. Kagan. Suppression of inelastic channels in resonant nuclear scattering in crystals. Zh. Exp. Teor. Fiz. 48, 327 (1965) [Sov. Phys. JETP 21, 215 (1965)].
</li>
<li>Yu. Kagan, A.M. Afanas'ev. Suppression of inelastic channels in resonance scattering of neutrons in regular crystals. Zh. Exp. Teor. Fiz. 49, 1504 (1965) [Sov. Phys. JETP 22, 1032 (1966)].
</li>
<li>S.Sh. Shil'shtein et al. Anomalous transmission of neutrons in a perfect CdS crystal. Pis'ma ZhETF 12, 80 (1970) [JETP Lett. 12, 56 (1970)].
</li>
<li>S.Sh. Shil'shtein, V.A. Somenkov, V.P. Dokashenko. Suppression of (n, y) reaction in resonant scattering of neutrons by a perfect CdS crystal. Pis'ma ZhETF 13, 301 (1971) [JETP Lett. 13, 214 (1971)].
</li>
<li>W.H. Zachariasen. Theory of X-ray Diffraction in Crystals (Wiley, 1945).
</li>
<li>B.W. Batterman, H. Cole. Dynamical diffraction of X-rays by perfect crystals. Rev. Mod. Phys. 36, 681 (1964).
<a href="https://doi.org/10.1103/RevModPhys.36.681">https://doi.org/10.1103/RevModPhys.36.681</a>
</li>
<li>A. Authier. Dynamical Theory of X-ray Diffraction (Oxford Univ. Press, 2001).
</li>
<li>Z.G. Pinsker. Dynamical Scattering of X-Rays in Crystals (Nauka, 1982; Springer, 1978).
</li>
<li>N. Kato. The energy flow of X-rays in an ideally perfect crystal: comparison between theory and experiments. Acta Cryst. 13, 349 (1960).
<a href="https://doi.org/10.1107/S0365110X60000819">https://doi.org/10.1107/S0365110X60000819</a>
</li>
<li> N. Kato. A theoretical study of Pendell?osung fringes. I. General considerations. Acta Cryst. 14, 526 (1961).
<a href="https://doi.org/10.1107/S0365110X61001625">https://doi.org/10.1107/S0365110X61001625</a>
</li>
<li> N. Kato. A theoretical study of Pendell?osung fringes. II. Detailed discussion based upon a spherical wave theory. Acta Cryst. 14, 627 (1961).
<a href="https://doi.org/10.1107/S0365110X61001947">https://doi.org/10.1107/S0365110X61001947</a>
</li>
<li> N. Kato. Pendell?osung fringes in distorted crystals III. Application to homogeneously bent crystals. J. Phys. Soc. Japan 19, 971 (1964).
<a href="https://doi.org/10.1143/JPSJ.19.971">https://doi.org/10.1143/JPSJ.19.971</a>
</li>
<li> C.G. Shull. Observation of Pendell?osung fringe structure in neutron diffraction. Phys. Rev. Lett. 21, 1585 (1968).
<a href="https://doi.org/10.1103/PhysRevLett.21.1585">https://doi.org/10.1103/PhysRevLett.21.1585</a>
</li>
<li> C.G. Shull. Perfect crystals and imperfect neutrons. J. Appl. Phys. 6, 257 (1973).
<a href="https://doi.org/10.1107/S0021889873008654">https://doi.org/10.1107/S0021889873008654</a>
</li>
<li> C.G. Shull, W.M. Shaw. Neutron Pendell?osung fringe structure in the Laue diffraction by germanium. Z. Naturforsch. 28a, 657 (1973).
</li>
<li> E.O. Vezhlev et al. Effect of anomalous absorption of neutrons undergoing Laue diffraction at Bragg angles close to п/2. Pis'ma ZhETF 96, 3 (2012) [JETP Lett. 96, 1 (2012)].
</li>
<li> V.V. Voronin et al. Analysis of spatial resolution of an experiment on verification of the equivalence principle for a neutron by the diffraction method. Pis'ma ZhTF 43, 75 (2017) [Technical Phys. Lett. 43, 270 (2017)].
<a href="https://doi.org/10.1134/S1063785017030129">https://doi.org/10.1134/S1063785017030129</a>
</li>
<li> A.Ya. Dzyublik, V.Yu. Spivak. Laue diffraction of spherical M?ossbauer waves. Ukr. J. Phys. 61, 826 (2016).
<a href="https://doi.org/10.15407/ujpe61.09.0826">https://doi.org/10.15407/ujpe61.09.0826</a>
</li>
<li> I.I. Gurevich, L.V. Tarasov. Low energy neutron phisics (Nauka, 1965; North-Holland, 1968).
</li>
<li> A. Akhiezer, I. Pomeranchuk. Some Problems of Nuclear Theory (GITTL, 1950) (in Russian).
</li>
<li> M.L. Goldberger, K.M. Watson. Collision Theory (Wiley, 1964).
</li>
<li> M.A. Lavrentiev, B.V. Shabat, Methods of the Theory of Functions of Complex Variable (Nauka, 1973) (in Russian).</li>

Downloads

Published

2018-03-02

How to Cite

Dzyublik, A. Y., Slisenko, V. I., & Mykhaylovskyy, V. V. (2018). Symmetric Laue Diffraction of Spherical Neutron Waves in Absorbing Crystals. Ukrainian Journal of Physics, 63(2), 174. https://doi.org/10.15407/ujpe63.2.174

Issue

Section

Structure of materials

Most read articles by the same author(s)