Impact of the Cell Wall on Cyanide Biodegradation in the Model of the Respiratory Mechanism

Authors

  • V.S. Yakovliev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V.N. Ermakov Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • B.I. Lev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe68.2.113

Keywords:

cell wall, cyanide, pulsed electric field, respiratory chain, porin, permeability, passive diffusion

Abstract

Based on the general model of the respiratory mechanism of cyanide degradation by microorganisms, we introduce the impact of the cell wall on the degradation process under the conditions with and without the initial short-term pulsed electric field treatment. The research is conducted using non-linear phenomenological equations, and the solution approximation is obtained. Theoretical and experimental data are compared, and they are in good agreement. We demonstrate that the initial short-term pulsed electric field treatment increases the permeability of cyanide through the cell wall, as well as the rate of activation of the respiratory chains. The steady-state solutions and the maximum rate of cyanide addition are derived under the conditions that cyanide is continuously added to the solution with bacteria, and there is no initial pulsed electric field treatment.

References

D.L. Nelson, M.M. Cox. Lehninger Principles of Biochemistry (WH Freeman, 2012) [ISBN-13: 978-1-4292-3414-6].

A.S. Davydov. Biology and Quantum Mechanics (Pergamon Press, 1982) [ISBN-13: 978-0080263922].

P. Mitchell. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. Camb. Philos. Soc. 41, 445 (1966).

https://doi.org/10.1111/j.1469-185X.1966.tb01501.x

P. Mitchell. Chemiosmotic coupling in energy transduction: A logical development of biochemical knowledge. J. Bioenerg. Biomembr. 3, 5 (1972).

https://doi.org/10.1007/BF01515993

R.E. Harris, A.W. Bunch, C.J. Knowles. Microbial cyanide and nitrile metabolism. Sci. Prog., Oxf. 71, 293 (1987).

Jui-Lin Chen, D.A. Kunz. Cyanide utilization in Pseudomonas fluorescens NCIMB 11764 involves a putative siderophore. FEMS Microbiol. Lett. 156, 61 (1997).

https://doi.org/10.1016/S0378-1097(97)00396-0

D.A. Kunz, J.L. Chen, G. Pan. Accumulation of alphaketo acids as essential components in cyanide assimilation by Pseudomonas fluorescens NCIMB 11764. Appl. Environ Microbiol. 64, 4452 (1998).

https://doi.org/10.1128/AEM.64.11.4452-4459.1998

V.I. Podolska, Z.R. Ulberg, V.M. Ermakov et al. Study of the effect of low-intensity electromagnetic radiation on biological nanostructures in degradation of transition metal cyanides Nanosystems, nanomaterials, nanotechnologies 4, 245 (2006) (in Ukrainian).

V.N. Ermakov, M.M. Kosytskyy. The influence of microwave irradiation to cyanide on bacteria's destruction. Physics of the Alive 14, 11 (2006) (in Ukrainian).

V.I. Podolska, V.N. Ermakov, L.N. Yakubenko et al. Effect of low-intensity pulsed electric fields on the respiratory activity and electrosurface properties of bacteria. Food Biophysics 4, 281 (2009).

https://doi.org/10.1007/s11483-009-9126-7

Z. Ulberg, V. Podolska, L. Yakubenko, V. Ermakov. Weak pulse electric fields and bacteria respiration. Proceedings of the International Conference on Bio&Food Electrotechnologies - BFE 2009. (Imprimerie Danquigny, 2009).

V. Podolska, L. Yakubenko, N. Grishchenko et al. Influence of weak pulse electric fields on biocolloides-cyanide destructors. Proceedings of the International Conference on Bio&Food Electrotechnologies - BFE 2009. (Imprimerie Danquigny, 2009).

V.I. Podolska, L.N. Yakubenko, Z.R. Ulberg et al. Effect of weak pulse electric fields on surface properties and destructive activity of pseudomonas bacteria. Colloid Journal 72, 830 (2010).

https://doi.org/10.1134/S1061933X10060153

L.N. Yakubenko, V.I. Podolska, V.E. Vember, V.I. Karamushka. The influence of transition metal cyanide complexes on the electrosurface properties and energy parameters of bacterial cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects 104, 11 (1995).

https://doi.org/10.1016/0927-7757(95)03243-7

R.E. Harris, C.J. Knowles. Isolation and growth of a Pseudomonas species that utilizes cyanide as a source of nitrogen. J. Gen. Microbiol. 129, 1005 (1983).

https://doi.org/10.1099/00221287-129-4-1005

J.L. Whitlock. Biological detoxification of precious metal processing wastewaters. Geomicrobiology J. 8, 241 (1990).

https://doi.org/10.1080/01490459009377896

V.M. Luque-Almagro, M.J. Huertas, M. Martinez-Luque et al. Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl. Environ. Microbiol. 71 (2), 940 (2005).

https://doi.org/10.1128/AEM.71.2.940-947.2005

R. Benz, K. Bauer. Permeation of hydrophilic molecules through the outer membrane of gram-negative bacteria. Review on bacterial porins. Eur. J. Biochem. 176, 1 (1988).

https://doi.org/10.1111/j.1432-1033.1988.tb14245.x

L.M. Shuler, F. Kargi. Bioprocess Engineering. Basic Concepts (Prentice Hall PTR, 2002) [ISBN-13: 978-0-13-081908-6].

Downloads

Published

2023-04-20

How to Cite

Yakovliev, V., Ermakov, V., & Lev, B. (2023). Impact of the Cell Wall on Cyanide Biodegradation in the Model of the Respiratory Mechanism. Ukrainian Journal of Physics, 68(2), 113. https://doi.org/10.15407/ujpe68.2.113

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)