Visualizing Chemical Reactions with X-rays

Authors

  • S. Bratos Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie
  • M. Wulff European Synchrotron Radiation Facility
  • J.-C. Leicknam Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie
  • R. Vuilleumier Ecole Normale Supérieure, Département de Chimie
  • X. Rozanska Materials Design SARL

DOI:

https://doi.org/10.15407/ujpe56.8.763

Keywords:

-

Abstract

The recombination of laser-dissociated iodine molecules dissolved in CCl4 is explored by time-resolved x-ray diffraction. The x-ray
pulses employed in our experiments were generated by the ESRF synchrotron in Grenoble. The solvent contribution to the measured signals was eliminated using appropriate experimental procedures. Motions of iodine atoms were then studied from 200 ps to 10 ps. Different relaxation processes are shown to operate in this time domain. It is proved that the iodine recombination follows two reaction paths, taking place in the electronic states X and A/A' of I2, respectively. In spite of widely different  experimental approaches, laser optical and x-ray studies provide a similar picture of this prototype reaction.

References

Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

C. Bressler and M. Chergui, Chem. Rev. 104, 1781 (2004).

https://doi.org/10.1021/cr0206667

S. Bratos and M. Wulff, Adv. Chem. Phys. 137, 1 (2008).

https://doi.org/10.1002/9780470238080.ch1

M. Chergui and A. H. Zewail, Chem. Phys. Chem. 10, 28 (2009).

https://doi.org/10.1002/cphc.200800667

F. Schotte, M. Lim, T.A. Jackson, A.V. Smirnov, J. Soman, J.S. Olson, G. Phillips, jr., M. Wulff, and P.A. Anfinrud, Science 300, 1944 (2003).

https://doi.org/10.1126/science.1078797

M. Cammarata, M. Levantino, F. Schotte, P.A Anfinrud, F. Ewald, J. Choi, A. Cupane, M. Wulff, and H. Ihee, Nature Methods 5, 881 (2008).

https://doi.org/10.1038/nmeth.1255

A. Plech, M. Wulff, S. Bratos, F. Mirloup, R. Vuilleumier, F. Schotte, and P.A. Anfinrud, Phys. Rev. Lett. 92 (12), 125505 (2004).

https://doi.org/10.1103/PhysRevLett.92.125505

M. Wulff, S. Bratos, A. Plech, R. Vuilleumier, F. Mirloup, M. Lorenc, Q. Kong, and H. Ihee, J. Chem. Phys. 124 (3), 034501 (2006).

https://doi.org/10.1063/1.2149852

A.L. Harris, J.K. Brown, and C.B. Harris, Ann. Rev. Phys. Chem. 39, 341 (1988).

https://doi.org/10.1146/annurev.pc.39.100188.002013

F. Schotte, S. Techert, P.A. Anfinrud, V. Srajer, K. Moffat, and M. Wulff, Third-Generation Hard X-ray Synchrotron Radiation Sources (Wiley, New York, 2002).

M. Cammarata, M. Lorenc, T.K. Kim, J.H. Lee, Q.Y. Kong, E. Pontecorvo, M. Lo Russo, G. Schiró, A. Cupane, M. Wulff, and H. Ihee, J. Chem. Phys. 124 (12), 124504 (2006).

https://doi.org/10.1063/1.2176617

S. Bratos, F. Mirloup, R. Vuilleumier, and M. Wulff, J. Chem. Phys. 116 (24), 10615 (2002).

https://doi.org/10.1063/1.1477923

M. Ben-Nun, Jianshu Cao, and Kent R. Wilson, J. Phys. Chem. A 101 (47), 8743 (1997).

https://doi.org/10.1021/jp971764c

R. Neutze and R. Wouts, J. of Synchr. Rad. 7, 22 (2000).

https://doi.org/10.1107/S0909049599012352

Y.P. Varshni, Can. J. Chem. 66, 763 (1988).

https://doi.org/10.1139/v88-132

A. Abragam, Les Principes du Magnétisme Nucléaire (Univ. de France, Paris, 1961).

D.F. Kelley, N.A. Abul-Haj, and Du-Jeon Jang, J. Chem. Phys. 80 (9), 4105 (1984).

https://doi.org/10.1063/1.447291

Downloads

Published

2022-02-09

How to Cite

Bratos, S., Wulff, M., Leicknam, J.-C., Vuilleumier, R., & Rozanska, X. (2022). Visualizing Chemical Reactions with X-rays. Ukrainian Journal of Physics, 56(8), 763. https://doi.org/10.15407/ujpe56.8.763

Issue

Section

Atoms and molecules