Convolution Problems in Time-Resolved X-Ray Diffraction


  • S. Bratos Laboratoire de Physique Théorique de la Matiére Condensée, Université Pierre et Marie Curie
  • J.-Cl. Leicknam Laboratoire de Physique Théorique de la Matiére Condensée, Université Pierre et Marie Curie





Convolution problems in the time-resolved scattering of 10–1000-ps x-ray pulses are studied theoretically. The model system is a diluted solution of diatomic molecules A2 dissolved in an inert solvent. This system is submitted to a sub-picosecond laser pulse, which promotes the molecules A2 into an excited electronic state. The molecule then return into their ground state, passing through several intermediate electronic states. The effects of the finite duration of probing x-ray pulses on various x-ray signals are then examined in the frame of this model. Unbiased signals generated by very short x-ray pulses are explored first. Variations of a molecular geometry during this process are clearly visible in r-resolved, but are less explicit in q-resolved signals. The signals measured with x-ray pulses of a finite duration are studied next. Atomic motions remain detectable, but only if the x-ray pulses are shorter than or comparable to the times of a molecular dynamics. Here again, the r-resolved signals are more appropriate for monitoring the molecular dynamics than q-resolved signals. Finally, the effect of the insufficient temporal location of probing x-ray pulses with respect to that of exciting laser pulses is examined. It is shown that this last effect can be accounted for by simply replacing the true x-ray pulse intensity by another theoretically predicted intensity. The similarity of deconvolution techniques in spectroscopy and in time-resolved x-ray diffraction is strongly emphasized.


Deconvolution of Images and Spectra, edited by P.A. Janson, (Academic Press, New York, 1997).

W. Wallace, L.H. Schaeffer, and J.R. Swedlow, Bio Techniques, 31, 1076 (2001).

J.E. Diaz-Zamboni, E.V. Paravani, J.F. Adur, and V.H. Casco, Acta Microsc. 16, 8 (2007).

A. Meister, Deconvolution Problems in Nonparametric Statistics (Springer, Berlin, 2009).

Ch. Bressler and M. Chergui, Chem. Rev. 104, 1781 (2004).

S. Bratos and M. Wulff, Adv. Chem. Phys. 317, 1 (2008).

M. Chergui and A.H. Zewail, Chem. Phys. Chem. 10, 28 (2009).

M. Ben-Nun, J. Cao, and K.R. Wilson, Phys. Chem. A 101, 8743


R. Neutze and R. Wouts, J. of Synchr. Rad. 7, 22 (2000).

S. Bratos, F. Mirloup, R. Vuilleumier, and M. Wulff, J. Chem. Phys. 116, 10615 (2002).

J.P. Hansen and I.R. Mc Donald, Theory of Simple Liquids (Academic Press, New York, 2006).

M. Cammarata, M. Lorenc, T.K. Kim, J.H. Lee, Q.Y. Kong, E. Pontecorvo, M. Lo Russo, G. Schiró, A. Cupane, M. Wulff, and H. Ihee, J. Chem. Phys. 124, 124504 (2006).

A. Plech, M. Wulff, S. Bratos, F. Mirloup, R. Vuilleumier, F. Schotte, and P.A. Anfinrud, Phys. Rev. Lett. 92, 125505 (2004).

M. Wulff, S. Bratos, A. Plech, R. Vuilleumier, F. Mirloup, M. Lorenc, Q. Kong, and H. Ihee, J. Chem. Phys. 124, 034501 (2006).

Q.Y. Kong, J.H. Lee, M. Lo Russo, T.K. Kim, M. Lorenc, M. Cammarata, S. Bratos, Th. Buslaps, V. Honkimaki, H. Ihee, and M. Wulff, Acta Cryst. 124, 124504 (2010).

B.E. Warren, X-Ray Diffraction (Dover, New York, 1990).

D.F. Kelley, N.A. Abul-Haj, and Du-Jeon Jang, J. Chem. Phys. 80, 4105 (1984).

A.L. Harris, J.K. Brown, and C.B. Harris, Ann. Rev. Phys. Chem. 39, 341, (1988).

A. Abragam, Les Principes du Magnétisme Nucléaire (Univ. de France, Paris, 1961).

P.B. Crilly, W.E. Blass, and G.W. Halsey, in Deconvolution of Images and Spectra, edited by P.A. Janson (Academic Press, New York, 1997).




How to Cite

Bratos, S., & Leicknam, J.-C. (2012). Convolution Problems in Time-Resolved X-Ray Diffraction. Ukrainian Journal of Physics, 57(2), 133.



Atoms and molecules

Most read articles by the same author(s)