Uncertainties Due to Hadronic Production in Final-State Interactions at Long-Baseline Neutrino Facility

Authors

  • R. Devi Department of Physics, University of Jammu, Jammu, India
  • J. Singh Department of Physics, University of Lucknow, Lucknow, India
  • B. Potukuchi Department of Physics, University of Jammu, Jammu, India

DOI:

https://doi.org/10.15407/ujpe67.1.22

Keywords:

neutrino, uncertainties, final-state interactions, survival probability, nuclear effects

Abstract

Recent neutrino oscillation experiments used high atomic number nuclear targets to attain sufficient interaction rates. The use of these complex targets introduced systematic uncertainties due to the nuclear effects in the experimental observables and need to be measured properly to pin down the discovery. Through this simulation work, we are trying to quantify the nuclear effects in the argon (Ar) target in comparison to hydrogen (H) target which are proposed to be used at Deep Underground Neutrino Experiment far detector and near detector, respectively. Generated Events for Neutrino Interaction Experiments and NuWro, two neutrino event generators, are used to construct final state kinematics. To quantify the systematic uncertainties in the observables, we present the ratio of the oscillation probabilities (P(Ar)/P(H)) as a function of the reconstructed neutrino energy.

References

B. Abi et al. (DUNE collaboration). Deep underground neutrino experiment (DUNE), far detector technical Design report. Volume I. Introduction to DUNE. JINST 15, 08, T08008 (2020).

B. Abi et al. (DUNE collaboration). Deep underground neutrino experiment (DUNE), far detector technical design report. Volume II. DUNE Physics. arXiv:2002.03005 [hepex] (2020).

B. Abi et al. (DUNE collaboration). Deep underground neutrino experiment (DUNE), far detector technical design report. Volume III. DUNE Far Detector Technical Coordination. JINST 15 (08), T08009 (2020).

B. Abi et al. (DUNE collaboration). Deep underground neutrino experiment (DUNE), far detector technical design report. Volume IV. Far Detector Single-phase Technology. JINST 15 (08), T08010 (2020).

B. Abi et al. (DUNE collaboration). Long-baseline neutrino oscillation physics potential of the DUNE experiment. Eur. Phys. J. C 80, 978 (2020).

B. Abi et al. (DUNE collaboration). Supernova neutrino burst detection with the deep underground neutrino experiment. Eur. Phys. J. C 81, 423 (2021).

B. Abi et al. (DUNE collaboration). A prospects for beyond the standard model physics searches at the deep underground neutrino experiment. Eur. Phys. J. C 80, 322 (2021).

J. Singh. Constraining the effective mass of Majorana neutrino with sterile neutrino mass for inverted ordering spectrum. Adv. High Energy Phys. 2019, 1 (2019).

https://doi.org/10.1155/2019/4863620

S. Nagu, J. Singh, J. Singh, R.B. Singh. Impact of crosssectional uncertainties on DUNE sensitivity due to nuclear effects. Nucl. Phys. B 951, 114888 (2020).

https://doi.org/10.1016/j.nuclphysb.2019.114888

P. Coloma, P. Huber, C. Jen, C. Mariani. Neutrino-nucleus interaction models and their impact on oscillation analyses. Phys. Rev. D 89, 073015 (2014).

https://doi.org/10.1103/PhysRevD.89.073015

S. Nagu, J. Singh, J. Singh, R.B. Singh. Nuclear effects and CP sensitivity at DUNE. Adv. High Energy Phys. 2020, 5472713 (2020).

https://doi.org/10.1155/2020/5472713

S. Frullani, J. Mouge. Single particle properties of nuclei through (e, e′p) reactions. Adv. Nucl. Phys. 14, 1-283 (1984).

R.A. Smith, E.J. Moniz. Neutrino reactions on nuclear targets. Nucl. Phys. B 43, 605 (1972).

https://doi.org/10.1016/0550-3213(72)90040-5

H. Chen et al. (MicroBooNE Collaboration). FERMILABPROPOSAL-0974 (2007).

A.A. Aguilar-Areval et al. (MiniBooNE Collaboration). Measurement of muon neutrino quasielastic scattering on carbon. Phys. Rev. Lett. 100, 032301 (2008).

U. Mosel, O. Lalakulich. Neutrino-nucleus interactions. arXiv:1211.1977v1 [nucl-th] (2012).

https://doi.org/10.1063/1.3700587

J. Singh, S. Nagu, J. Singh, R.B. Singh. Quantifying multinucleon effect in argon using high-pressure TPC. Nucl. Phys. B 957, 115103 (2020).

https://doi.org/10.1016/j.nuclphysb.2020.115103

C. Andreopoulos, A. Bell, D. Bhattacharya, F. Cavanna, J. Dobson, S. Dytman, H. Gallagher, P. Guzowski, R. Hatcher, P. Kehayias, A. Meregaglia, D. Naples, G. Pearce, A. Rubbia, M. Whalley, T. Yang. The GENIE neutrino Monte Carlo generator. Nucl. Instrum. Meth. A 614, 87 (2010).

https://doi.org/10.1016/j.nima.2009.12.009

T. Golan, C. Juszczak, J.T. Sobczyk. Effects of final-state interactions in neutrino-nucleus interactions. Phys. Rev. C 86, 015505 (2012).

https://doi.org/10.1103/PhysRevC.86.015505

D. Drakoulakos et al. (Minerva Collaboration). Proposal to perform a high-statistics neutrino scattering experiment using a fine-grained detector. FERMILAB-P-938 (2004). hep-ex/0405002.

P. Adamson et al. (MINOS Collaboration). Study of muon neutrino disappearance using the Fermilab main injector neutrino beam. Phys. Rev. D 77, 072002 (2008).

D. Ayres et al. (NOvA Collaboration). NOvA proposal to build a 30 kiloton off-axis detector to study neutrino oscillations in the Fermilab NuMI Beamline. FermilabProposal-0929 (2005).

M. Soderberg. ArgoNeuT: A liquid argon time projection chamber test in the NuMIBeamline. arxiv:0910.3433 (2009).

https://doi.org/10.1063/1.3274193

Y. Hayato. A neutrino interaction simulation program library NEUT. Acta Phys. Polon. B 40, 2477 (2009).

A. Bodek, J.L. Ritchie. Further studies of fermi motion effects in lepton scattering from nuclear targets. Phys. Rev. D 24, 1400 (1981).

https://doi.org/10.1103/PhysRevD.24.1400

C.H. Llewellyn Smith. Neutrino reactions at accelerator energies. Phys. Rept. 3, 261 (1972).

https://doi.org/10.1016/0370-1573(72)90010-5

A. Bodek, S. Avvakumov, R. Bradford, H. Budd. Modeling atmospheric neutrino interactions: Duality constrained parameterization of vector and axial nucleon form factors. 30th International Cosmic Ray Conference, arxiv:0708.1827 (2007).

R. Bradford, A. Bodek, H. Budd, J. Arrington. A New parameterization of the nucleon elastic form-factors. Nucl. Phys. B Proc. Suppl. 159, 127 (2006).

https://doi.org/10.1016/j.nuclphysbps.2006.08.028

D. Rein, L.M. Sehgal. Neutrino excitation of baryon resonances and single pion production. Ann. Phys. 133, 79 (1981).

https://doi.org/10.1016/0003-4916(81)90242-6

K.M. Graczyk, D. Kielczewska, P. Przewlocki, J.T. Sobczyk. CA5 axial form factor from bubble chamber experiments. Phys. Rev. D 80, 093001 (2009).

https://doi.org/10.1103/PhysRevD.80.093001

T. Sjostrand, S. Mrenna, P. Skands. PYTHIA 6.4 Physics and Manual. JHEP 05, 026 (2006).

https://doi.org/10.1088/1126-6708/2006/05/026

A. Bodek, U.K. Yang. Higher twist, xi(omega) scaling, and effective LO PDFs for lepton scattering in the few GeV region. J. Phys. G 29, 1899 (2003).

https://doi.org/10.1088/0954-3899/29/8/369

B. Abi et al. (DUNE collaboration). The DUNE far detector interim design report Volume 1: Physics, technology and strategies. FERMILAB-DESIGN-2018-02, arXiv:1807.10334 [physics.ins-det] (2018).

B. Abi et al. (DUNE collaboration). Deep underground neutrino experiment (DUNE), far detector technical design report. Vol. II DUNE physics. FERMILAB-PUB-20-025-ND, FERMILAB-DESIGN-2020-02, arXiv: 2002:03005v2 [hep-ex] (2020).

http://home.fnal.gov/∼ljf26/DUNE2015CDRFluxes/NuMI_Improved_80GV_StandardDP/g4lbne_v3r2p4b_FHC_ND_globes_flux.txt.

A.M. Ankowski, O. Benhar, P. Coloma, P. Huber, C. Jen, C. Mariani, D. Meloni, E. Vagnoni. Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experiments. Phys. Rev. D 92, 073014 (2015).

https://doi.org/10.1103/PhysRevD.92.073014

U. Mosel, O. Lalakulich, K. Gallmeister. Energy reconstruction in the long-baseline neutrino experiment. Phys. Rev. Lett. 112, 151802 (2014)

https://doi.org/10.1103/PhysRevLett.112.151802

Downloads

Published

2022-02-11

How to Cite

Devi, R., Singh, J., & Potukuchi, B. (2022). Uncertainties Due to Hadronic Production in Final-State Interactions at Long-Baseline Neutrino Facility. Ukrainian Journal of Physics, 67(1), 22. https://doi.org/10.15407/ujpe67.1.22

Issue

Section

Fields and elementary particles