Vacuum Birefringence in a Supercritical Magnetic Field
DOI:
https://doi.org/10.15407/ujpe64.3.181Keywords:
vacuum birefringence, quantum field theory, strong magnetic fieldAbstract
The birefringence effect in vacuum in strong magnetic fields has been considered. The polarization tensor in a constant external magnetic field is analyzed in the framework of quantum field theory and on the basis of the electron Green’s function calculated as the sum over the Landau levels. The case of the lowest Landau levels for photons with the energies below the electron-positron pair creation threshold is considered, and the corresponding refractive indices of the physical vacuum for anomalous and normal waves are determined.
References
E. Zavattini, G. Zavattini, G. Ruoso, G. Raiteri, E. Polacco, E. Milotti, V. Lozza, M. Karuza, U. Gastaldi, G. Di Domenico, F. Della Valle, R. Cimino, S. Carusotto, G. Cantatore, M. Bregant. New PVLAS results and limits on magnetically induced optical rotation and ellipticity in vacuum. Phys. Rev. D 77, 032006 (2008). https://doi.org/10.1103/PhysRevD.77.032006
F. Della Valle, E. Milotti, A. Ejlli, G. Piemontese, G. Zavattini, U. Gastaldi, R. Pengo, G. Ruoso. First results from the new PVLAS apparatus: A new limit on vacuum magnetic birefringence. Phys. Rev. D 90, 092003 (2014). https://doi.org/10.1103/PhysRevD.90.092003
F. Della Valle, A. Ejlli, U. Gastaldi, G. Messineo, E. Milotti, R. Pengo, G. Ruoso, G. Zavattini. The PVLAS experiment: measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry–Perot cavity. Eur. Phys. J. C 76, 24 (2016). https://doi.org/10.1140/epjc/s10052-015-3869-8
A. Di. Piazza, C. Muller, K.Z. Hatsagortsyan, C.H. Keitel. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177 (2012). https://doi.org/10.1103/RevModPhys.84.1177
J.P. Zou, C. Le Blanc, D.N. Papadopoulos, G. Cheriaux, P. Georges, G. Mennerat, F. Druon, L. Lecherbourg, A. Pellegrina, P. Ramirez et al. Design and current progress of the Apollon 10 PW project. High Power Laser Sci. Eng. 3, e2 (2015). https://doi.org/10.1017/hpl.2014.41
H.P. Schlenvoigt, T. Heinzl, U. Schramm, T. Cowan, R. Sauerbrey. Prospects for studying vacuum polarisation using dipole and synchrotron radiation. Phys. Scr. 91, 023010 (2016). https://doi.org/10.1088/0031-8949/91/2/023010
O. Tesileanu, D. Ursescu, R. Dabu, N.V. Zamfir. Extreme light infrastructure. J. Phys.: Conf. Ser. 420, 012157 (2013). https://doi.org/10.1088/1742-6596/420/1/012157
R.P. Mignani, V. Testa, D. Gonzalez Caniulef, R. Taverna, R. Turolla, S. Zane, K. Wu. Evidence for vacuum birefringence from the first optical-polarimetry measurement of the isolated neutron star RX J1856.5–3754. Mon. Not. R. Astron. Soc. 465, 492 (2017). https://doi.org/10.1093/mnras/stw2798
H. Euler, B. Kockel, The scattering of light by light in the Dirac theory. Naturwissenschaften 23, 246 (1935). https://doi.org/10.1007/BF01493898
W. Heisenberg, H. Euler. Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98, 714 (1936). https://doi.org/10.1007/BF01343663
I.A. Batalin, A.E. Shabad. Green's function of a photon in a constant homogeneous electromagnetic field of general form. JETP 33, 483 (1971).
J. Schwinger. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951). https://doi.org/10.1103/PhysRev.82.664
S. Adler. Photon splitting and photon dispersion in a strong magnetic field. Ann. Phys. 67, 599 (1971). https://doi.org/10.1016/0003-4916(71)90154-0
W. Tsai. Vacuum polarization in homogeneous magnetic fields. Phys. Rev. D 10, 2699 (1974). https://doi.org/10.1103/PhysRevD.10.2699
V.M. Katkov. Polarization operator of a photon in a magnetic field. Zh. ` Eksp. Teor. Fiz. 150, 229 (2016) (in Russian).
W. Tsai, T. Erber. Propagation of photons in homogeneous magnetic fields: Index of refraction. Phys. Rev. D 15, 1132 (1975). https://doi.org/10.1103/PhysRevD.12.1132
K. Kohri, S. Yamada. Polarization tensors in strong magnetic fields. Phys. Rev. D 65, 043006 (2002). https://doi.org/10.1103/PhysRevD.65.043006
A. Shabad. Photon dispersion in a strong magnetic field. Ann. Phys. 90, 166 (1975). https://doi.org/10.1016/0003-4916(75)90144-X
M. Diachenko, O. Novak, R. Kholodov. A cascade of e?e+ pair production by a photon with subsequent annihilation to a single photon in a strong magnetic field. Laser Phys. 26, 066001 (2016). https://doi.org/10.1088/1054-660X/26/6/066001
K. Hattori, K. Itakura. Vacuum birefringence in strong magnetic fields: (I) Photon polarization tensor with all the Landau levels. Ann. Phys. 330, 23 (2013). https://doi.org/10.1016/j.aop.2012.11.010
K. Hattori, K. Itakura. Vacuum birefringence in strong magnetic fields: (II) Complex refractive index from the lowest Landau level. Ann. Phys. 334, 58 (2013). https://doi.org/10.1016/j.aop.2013.03.016
G. Calucci, R. Ragazzon. Nonlogarithmic terms in the strong field dependence of the photon propagator. J. Phys. A 27, 2161 (1994). https://doi.org/10.1088/0305-4470/27/6/036
V.P. Gusynin, V.A. Miransky, I.A. Shovkovy. Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field. Nucl. Phys. B 462, 249 (1996). https://doi.org/10.1016/0550-3213(96)00021-1
A. Chodos, K. Everding, D.A. Owen. QED with a chemical potential: The case of a constant magnetic field. Phys. Rev. D 42, 2881 (1990). https://doi.org/10.1103/PhysRevD.42.2881
V.P. Gusynin, V.A. Miransky, I.A. Shovkovy. Dynamical chiral symmetry breaking by a magnetic field in QED. Phys. Rev. D 52, 4747 (1995). https://doi.org/10.1103/PhysRevD.52.4747
V.P. Gusynin, V.A. Miransky, I.A. Shovkovy. Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in 3 + 1 dimensions. Phys. Lett. B 349, 477 (1995). https://doi.org/10.1016/0370-2693(95)00232-A
D.B. Melrose, A.J. Parle. Quantum electrodynamics in strong magnetic fields. I. Electron states. Aust. J. Phys. 36, 755 (1983). https://doi.org/10.1071/PH830755
P.I. Fomin, R.I. Kholodov. To the theory of resonance quantum electrodynamic processes in an external magnetic field. Ukr. Fiz. Zh. 44, 1526 (1999) (in Ukrainian).
M.M. Dyachenko, O.P. Novak, R.I. Kholodov. Resonant threshold two-photon e?e+ pair production onto the lowest Landau levels in a strong magnetic field. Ukr. J. Phys. 59, 849 (2014). https://doi.org/10.15407/ujpe59.09.0849
M.M. Diachenko, O.P. Novak, R.I. Kholodov. Pair production in a magnetic and radiation field in a pulsar magnetosphere. Mod. Phys. Lett. A 30, 1550111 (2015). https://doi.org/10.1142/S0217732315501114
M.M. Diachenko, O.P. Novak, R.I. Kholodov. Resonant generation of an electron–positron pair by two photons to excited Landau levels. JETP 121, 813 (2015). https://doi.org/10.1134/S1063776115110126
N.N. Bogoliubov, D.V. Shirkov. Introduction to the Theory of Quantized Field (Interscience Publishers, 1959).
K. Fukushima. Magnetic-field induced screening effect and collective excitations. Phys. Rev. D 83, 111501 (2011). https://doi.org/10.1103/PhysRevD.83.111501
A.E. Shabad. Interaction of electromagnetic radiation with supercritical magnetic field. In Workshop SMFNS/ICIMAF, Havana (2004), p. 0307214.
A.A. Sokolov, I.M. Ternov, V.G. Bagrov, R.A. Rzayev. Synchrotron Radiation (Nauka, 1966) (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.