Vacuum Birefringence in the Fields of a Current Coil and a Guided Electromagnetic Wave

  • O. Novak Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • M. Diachenko Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • E. Padusenko Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • R. Kholodov Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
Keywords: quantum electrodynamics, strong fields, birefringence, vacuum polarization, magnetic field, laser radiation

Abstract

The vacuum birefringence effect in magnetic fields generated by either a laser-driven capacitor-coil generator or an electromagnetic wave in a radio frequency guide has been theoretically studied. The ellipticity acquired by a linearly polarized laser beam propagating in those fields is calculated. The obtained results are compared with the parameters of the PVLAS experiment aimed at the experimental observation of the vacuum birefringence effect in a magnetic field.

References

W. Heisenberg, H. Euler. Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98, 714 (1936). https://doi.org/10.1007/BF01343663

A.E. Shabad. Photon dispersion in a strong magnetic field. Ann. Phys. 90, 166 (1975). https://doi.org/10.1016/0003-4916(75)90144-X

A.E. Shabad. Polarizaton of vacuum and quantum relativistic gas in an external field. Trudy Fiz. Inst. Akad. Nauk SSSR 192, 5 (1988) (in Russian).

A.E. Shabad. Photon propagation in a supercritical magnetic field. J. Exp. Theor. Phys. 98, 186 (2004). https://doi.org/10.1134/1.1675886

A.E. Shabad, V.V. Usov. Real and virtual photons in an external constant electromagnetic field of most general form. Phys. Rev. D 81, 125008 (2010). https://doi.org/10.1103/PhysRevD.81.125008

R.P. Mignani, V. Testa, D. Gonz’alez Caniulef, R. Taverna, R. Turolla, S. Zane, K. Wu. Evidence for vacuum birefringence from the first optical-polarimetry measurement of the isolated neutron star RX J1856.5–3754. Mon. Not. Roy. Astron. Soc. 465, 492 (2017). https://doi.org/10.1093/mnras/stw2798

J.S. Heyl, N.J. Shaviv. Polarization evolution in strong magnetic fields. Mon. Not. Roy. Astron. Soc. 311, 555 (2000). https://doi.org/10.1046/j.1365-8711.2000.03076.x

J.S. Heyl, N.J. Shaviv. QED and the high polarization of the thermal radiation from neutron stars. Phys. Rev. D 66, 023002 (2002). https://doi.org/10.1103/PhysRevD.66.023002

M. van Adelsberg, D. Lai. Atmosphere models of magnetized neutron stars: QED effects, radiation spectra and polarization signals. Mon. Not. Roy. Astron. Soc. 373, 1495 (2006). https://doi.org/10.1111/j.1365-2966.2006.11098.x

R. Fern’andez, S.W. Davis, The X-ray polarization signature of quiescent magnetars: effect of magnetospheric scattering and vacuum polarization. Astrophys. J. 730, 131 (2011). https://doi.org/10.1088/0004-637X/730/2/131

R. Taverna, R. Turolla, D. Gonz’alez Caniulef, S. Zane, F. Muleri, P. Soffitta. Polarization of neutron star surface emission: a systematic analysis. Mon. Not. Roy. Astron. Soc. 454, 3254 (2015). https://doi.org/10.1093/mnras/stv2168

D. Gonz’alez Caniulef, S. Zane, R. Taverna, R. Turolla, K. Wu. Polarized thermal emission from X–ray dim isolated neutron stars: the case of RX J1856.5–3754. Mon. Not. Roy. Astron. Soc. 459, 3585 (2016). https://doi.org/10.1093/mnras/stw804

E. Zavattini, G. Zavattini, G. Ruoso, G. Raiteri, E. Polacco, E. Milotti, V. Lozza, M. Karuza, U. Gastaldi, G. Di Domenico, F. Della Valle, R. Cimino, S. Carusotto, G. Cantatore, M. Bregant. New PVLAS results and limits on magnetically induced optical rotation and ellipticity in vacuum. Phys. Rev. D 77, 032006 (2008). https://doi.org/10.1103/PhysRevD.77.032006

F. Della Valle, E. Milotti, A. Ejlli, G.M.L. Piemontese, G. Zavattini, U. Gastaldi, R. Pengo, G. Ruoso. First results from the new PVLAS apparatus: A new limit on vacuum magnetic birefringence. Phys. Rev. D 90, 092003 (2014). https://doi.org/10.1103/PhysRevD.90.092003

F. Della Valle, A. Ejlli, U. Gastaldi, G. Messineo, E. Milotti, R. Pengo, G. Ruoso, G. Zavattini. The PVLAS experiment: Measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry–Perot cavity. Eur. Phys. J. C 76, 24 (2016). https://doi.org/10.1140/epjc/s10052-015-3869-8

S. Shakeri, S.Z. Kalantari, S.-S. Xue. Polarization of a probe laser beam due to nonlinear QED effects. Phys. Rev. A 95, 012108 (2017). https://doi.org/10.1103/PhysRevA.95.012108

A. Kosowsky. Cosmic microwave background polarization. Ann. Phys. 246, 49 (1996). https://doi.org/10.1006/aphy.1996.0020

H. Kubo, R. Nagata. Stokes parameters representation of the light propagation equations in inhomogeneous anisotropic, optically active media. Opt. Commun. 34, 306 (1980). https://doi.org/10.1016/0030-4018(80)90383-1

H. Kubo, R. Nagata. Vector representation of behavior of polarized light in a weakly inhomogeneous medium with birefringence and dichroism. J. Opt. Soc. Am. 73, 1719 (1983). https://doi.org/10.1364/JOSA.73.001719

H. Kubo, R. Nagata. Vector representation of behavior of polarized light in a weakly inhomogeneous medium with birefringence and dichroism. II. Evolution of polarization states. J. Opt. Soc. Am. A 2, 30 (1985). https://doi.org/10.1364/JOSAA.2.000030

H.J. Schneider-Muntau, J. Toth, H.W. Weijers. Generation of the highest continuous magnetic fields. IEEE Trans. Appl. Supercond. 14, 1245 (2004). https://doi.org/10.1109/TASC.2004.830543

H. Daido, F. Miki, K. Mima, M. Fujita, K. Sawai, H. Fujita, Y. Kitagawa, S. Nakai, C. Yamanaka, Generation of a strong magnetic field by an intense CO2 laser pulse. Phys. Rev. Lett. 56, 846 (1986). https://doi.org/10.1103/PhysRevLett.56.846

H. Daido, K. Mima, F. Miki, M. Fujita, Y. Kitagawa, S. Nakai, C. Yamanaka. Ultrahigh pulsed magnetic field produced by a CO2 laser. Jpn. J. Appl. Phys. 26, 1290 (1987). https://doi.org/10.1143/JJAP.26.1290

E.S. Zhivopistsev, A.G. Kamushkin, V.V. Korobkin, A.V. Morozov, S.L. Motylev. Generation of a mega-gauss magnetic field in a coil oscillator with laser-driven emf. Kvant. Elektron. 18, 1142 (1991) (in Russian).

C. Courtois, A.D. Ash, D.M. Chambers, R.A.D. Grundy, N.C. Woolsey. Creation of a uniform high magnetic-field strength environment for laser-driven experiments. J. Appl. Phys. 98, 054913 (2005). https://doi.org/10.1063/1.2035896

G. Liao, Y. Li, B. Zhu, Y. Li, F. Li, M. Li, X. Wang Z. Zhang, S. He, W. Wang, F. Lu, F. Zhang, L. Yang, K. Zhou, N. Xie et al. Proton radiography of magnetic fields generated with an open-ended coil driven by high power laser pulses. Matter Radiat. Extrem. 1, 187 (2016). https://doi.org/10.1016/j.mre.2016.06.003

K.F.F. Law, M. Bailly-Grandvaux, A. Morace, S. Sakata, K. Matsuo, S. Kojima, S. Lee, X. Vaisseau, Y. Arikawa, A. Yogo, K. Kondo, Z. Zhang, C. Bellei, J.J. Santos, S. Fujioka, H. Azechi. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry. Appl. Phys. Lett. 108, 091104 (2016). https://doi.org/10.1063/1.4943078

C. Rizzo, A. Rizzo, D.M. Bishop. The Cotton–Mouton effect in gases: experiment and theory. Int. Rev. Phys. Chem. 16, 81 (1997). https://doi.org/10.1080/014423597230316

H.-H. Mei, W.-T. Ni, S.-J. Chen, S.-S. Pan. Axion search with Q & A experiment. Mod. Phys. Lett. A 25, 983 (2010). https://doi.org/10.1142/S0217732310000149

D. Sprehn, G. Caryotakis, A. Haase, E. Jongewaard, L. Laurent, C. Pearson, R. Phillips. Latest results in SLAC 75 MW PPM klystrons. In Proceedings of 7th Workshop on High Energy Density and High Power RF, Kalamata, Greece, 3-17 June, 2005, (American Institute of Physics, 2006), Vol. 807, p. 137.

V.V. Nikolskii, T.I. Nikolskaya, Electrodynamics and Propagation of Radio Waves (Nauka, 1989) (in Russian).

Published
2018-12-01
How to Cite
Novak, O., Diachenko, M., Padusenko, E., & Kholodov, R. (2018). Vacuum Birefringence in the Fields of a Current Coil and a Guided Electromagnetic Wave. Ukrainian Journal of Physics, 63(11), 979. https://doi.org/10.15407/ujpe63.11.979
Section
Optics, atoms and molecules