Analysis of the Stability of Stationary Boundary Friction Modes in the Framework of a Synergetic Model

Authors

  • I. A. Lyashenko Sumy State University, Peter Gr¨unberg Institut-1
  • N N. Manko Sumy State University

DOI:

https://doi.org/10.15407/ujpe59.01.0087

Keywords:

boundary friction, friction force, shear stresses, strange attractor, Lorenz system

Abstract

A synergetic model describing the state of an ultrathin lubricant layer squeezed between two atomically smooth solid surfaces operating in the boundary friction mode has been developed further. To explain the presence of different operation modes of the system for various sets of its main parameters, the mathematical analysis of the synergetic model is carried out. The type of functioning a tribological system is described in accordance with the stability character of singular points, and the diagrams distinguishing various operation modes are obtained. Phase portraits corresponding to different stability types are plotted for all diagram areas. A stick-slip mode of motion that is often observed experimentally is described.

References

B.N.J. Persson, Sliding Friction. Physical Principles and Applications (Springer, Berlin, 2000).

https://doi.org/10.1007/978-3-662-04283-0

O.A. Mazyar, G.K. Jennings, and C. McCabe, Langmuir 25, 5103 (2009).

https://doi.org/10.1021/la804106f

A. Pertsin and M. Grunze, Langmuir 24, 135 (2008).

https://doi.org/10.1021/la702209g

S. Lee, R. Iten, M. M¨uller, and N.D. Spencer, Macromolecules 37, 8349 (2005).

https://doi.org/10.1021/ma049076w

Sh. Yamada, Langmuir 21, 8724 (2005).

https://doi.org/10.1021/la050953g

J. Israelachvili, Surf. Sci. Rep. 14, 109 (1992).

https://doi.org/10.1016/0167-5729(92)90015-4

V.L. Popov, Tech. Phys. 46, 605 (2001).

https://doi.org/10.1134/1.1372955

A.E. Filippov, J. Klafter, and M. Urbakh, Phys. Rev. Lett. 92, 135503 (2004).

https://doi.org/10.1103/PhysRevLett.92.135503

C.-R. Yang, Y.-C. Chiou, and R.-T. Lee, Tribol. Int. 32, 443 (1999).

https://doi.org/10.1016/S0301-679X(99)00074-2

R. Capozza, S.M. Rubinstein, I. Barel, M. Urbakh, and J. Fineberg, Phys. Rev. Lett. 107, 024301 (2011).

https://doi.org/10.1103/PhysRevLett.107.024301

I.A. Lyashenko, Tech. Phys. 56, 701 (2011).

https://doi.org/10.1134/S1063784211050227

O.M. Braun and M. Peyrard, Phys. Rev. Lett. 10, 125501 (2008).

https://doi.org/10.1103/PhysRevLett.100.125501

A. Benassi, A. Vanossi, G.E. Santoro, and E. Tosatti, Phys. Rev. Lett. 106, 256102 (2011).

https://doi.org/10.1103/PhysRevLett.106.256102

S. Ciraci and A. Buldum, Wear 254, 911 (2003).

https://doi.org/10.1016/S0043-1648(03)00246-1

O.M. Braun and N. Manini, Phys. Rev. E 83, 021601 (2011).

https://doi.org/10.1103/PhysRevE.83.021601

A.I. Volokitin and B.N.J. Persson, Phys. Rev. Lett. 106, 094502 (2011).

https://doi.org/10.1103/PhysRevLett.106.094502

I.A. Lyashenko, A.V. Khomenko and L.S. Metlov, Tribol. Int. 44, 476 (2011).

https://doi.org/10.1016/j.triboint.2010.12.005

A.V. Khomenko and I.A. Lyashenko, J. Phys. Studies 11, 268 (2007).

A.V. Khomenko, I.A. Lyashenko, and V.N. Borisyuk, Ukr. J. Phys. 54, 1139 (2009).

A.V. Khomenko and I.A. Lyashenko, J. Frict. Wear 31, 308 (2010).

https://doi.org/10.3103/S1068366610040100

I.A. Lyashenko and N.N. Manko, J. Frict. Wear 34, 38 (2013).

https://doi.org/10.3103/S1068366613010091

A.I. Olemskoi and E.A. Toropov, Fiz. Met. Metalloved. 9, 5 (1991).

G. Luengo, J. Israelachvili, and S. Granick, Wear 200, 328 (1996).

https://doi.org/10.1016/S0043-1648(96)07248-1

I.A. Lyashenko, Tech. Phys. 56, 869 (2011).

https://doi.org/10.1134/S1063784211060168

I.A. Lyashenko, Tech. Phys. 57, 17 (2012).

https://doi.org/10.1134/S1063784212010173

A.Yu. Loskutov and A.S. Mikhailov, Principles of the Theory of Complex Systems (Reg. Stokh. Dinam., MoscowIzhevsk, 2007) (in Russian)

E. Lorenz, J. Atmos. Sci. 20, 130 (1963).

https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

D. Ruelle and F. Takens, Comm. Math. Phys. 20, 167 (1971).

https://doi.org/10.1007/BF01646553

I.A. Lyashenko, A.V. Khomenko, and L.S. Metlov, Tech. Phys. 55, 1193 (2010).

https://doi.org/10.1134/S1063784210080190

Published

2018-10-18

How to Cite

Lyashenko, I. A., & Manko, N. N. (2018). Analysis of the Stability of Stationary Boundary Friction Modes in the Framework of a Synergetic Model. Ukrainian Journal of Physics, 59(1), 87. https://doi.org/10.15407/ujpe59.01.0087

Issue

Section

General problems of theoretical physics